
A Validation Model for the DSR protocol
Ana Cavalli, Cyril Grepet, Stéphane Maag and Vincent Tortajada

GET / Institut National des Telecommunications
9, rue Charles Fourier

F-91011 Evry Cedex, France
email : {Ana.Cavalli, Cyril.Grepet, Stephane.Maag, Vincent.Tortajada}@int-evry.fr

Abstract— This paper presents a validation model for the
Dynamic Source Routing (DSR) protocol. This model includes
a formal specification of the protocol and a set of scenarios.
The scenarios test the conformance of a given implementation to
some targeted system functionalities. The DSR protocol has been
specified following the IETF draft [1]. The formal specification
has been performed using the SDL language and the scenarios
have been generated from the specification using a method and
a tool developed at INT [2]. The test generation method is based
on a set of test purposes that express specific system properties
and is completely automated. In this paper, we also present the
experimentation results of the application of our tool to the DSR
protocol.

Keywords: Ad hoc wireless networks, routing protocol, DSR,
conformance testing, SDL.

I. INTRODUCTION

A wireless mobile Ad hoc network (MANET) is a collection
of mobile nodes which are able to communicate each other
without relying on predefined infrastructures. In this network,
there is no administrative node, and each node participates
in order to provide reliable operations in the network. The
nodes may move continuously leading to a volatile network
topology with interconnections between nodes that are often
modified. As a consequence of this infrastructureless envi-
ronment, each node communicates using their radio range
with open transmission medium and some of them behave
as routers to establish end-to-end connections. Due to these
aspects and the fact that the resources are limited in mobile
nodes, efficient routing in ad hoc networks is a crucial and
challenging problem.

From these unique characteristics of ad hoc networks, many
requirements for routing protocol design are raised. Many
researches on routing protocols for ad hoc networks have been
led, and several protocols have emerged. They can be classified
into three main categories: the proactive [3], reactive [1], [4]
and hybrid [5], [6] protocols. The Dynamic Source Routing
protocol (DSR) [1] is a simple and efficient reactive routing
protocol allowing the network to be completely self-organizing
and self-configuring without the need of infrastructure or ad-
ministration. This protocol has many chances to be normalized
soon by the IETF. Moreover, due to previous study showing
that reactive routing protocols are better suited in ad hoc
networks environment than proactive ones [7], some DSR
implementations have emerged.

However, most of the time, the research efforts dedicated to
this protocols are focused on simulation. Only few implemen-
tations have been produced, and the proposed implementation
environments have no more than a dozen of nodes.
The reasons are the difficulties to implement such routing
protocols, the costly efforts and material requirements to
develop them and to insure that all the functionalities presented
in the IETF standards have been implemented.

Conformance testing becomes a crucial phase of the ad
hoc routing protocol design and development. It is needed to
develop conformance testing methods for routing protocols.
Indeed functional and security failures caused by poor testing
may have a catastrophic effect on mobile wireless networks
reliability. In the last years, different conformance testing
methods have been developed for distributed communicating
systems. Some of them can be easily adapted to the validation
of such routing protocols. This is the case for goal-oriented
testing techniques that consist of selecting a specific property
of the system that is likely to be false or the behavior of a
specific component of the global system that is likely to be
faulty, and to generate test scenarios for only those parts. In
general, this selection is made by human experts that identify
the part of system’s behavior or the expected properties that
might be subject of testing and formulate test purposes or goals
based on this identification [8], [9].

In this paper, we propose a validation model of DSR, based
on a formal specification and a goal-oriented testing technique.
This work is a contribution to the development of correct DSR
implementations.

For the formal specification of the DSR protocol, we use
the SDL language [10]. This language is well adapted to the
description of the protocol and allows to provide a hierarchical
description of the system using different architecture levels, to
specify IP, DSR and link layer.

In order to perform goal-oriented testing, we use a method
and a tool developed at INT. The method is based on test
purposes and the tool allows to generate tests based on these
test purposes. In this paper, we apply this tool to generate test
scenarios for some functionalities (for instance the execution
of a Route Request), expressed as properties or purposes to
be tested. These test scenarios will be used to check that
different implementations of the DSR protocol satisfy the
required functionality.

The paper is organized as follows. Section 2 introduces
the DSR protocol. The two mechanisms of the protocol,
Route Discovery and Route Maintenance are presented in this



2

section. Section 3 presents the SDL specification of DSR
based on [1]. In Section 4, the experimentation results of
the application of the test procedure to the DSR protocol
are presented. Finally, the Section 5 concludes and gives the
perspectives of this work.

II. DSR PROTOCOL OVERVIEW

The Dynamic Source Routing protocol (DSR) [11], [1]
is a simple and efficient reactive Ad hoc unicast routing
protocol. It has been designed specifically for use in multi-
hop wireless Ad hoc networks of mobile nodes. By using
DSR, the network does not need any network infrastructure
or administration and it is completely self-organizing and self-
configuring. This routing protocol consists of two mechanisms:
the Route Discovery and the Route Maintenance that permit
to completely maintain and automatically determine routes.
These mechanisms are described in the following subsections.

A. Route Discovery

Route Discovery is one of the two mechanisms of the
protocol DSR. It is in charge to find routes between the nodes
into the network. DSR is a reactive protocol, a source node S

starts searching routes only if it needs to send a packet to a
destination D and if no routes are enclosed in its cache. To find
routes, DSR performs the Route Discovery by broadcasting
Route Request (RReq). Any intermediate node that receives
a non-duplicate RReq appends its address to the source route
list in the RReq packet and rebroadcast it (Figure 1).

When the destination node receives the packet, it sends
a Route Reply (RRep) back to the source. Further, in the
network, the nodes may cache routing information obtained
from Route Discovery and data packets. Moreover, if an
intermediate node has some requested information, that is the
route to destination, in its cache, it may send a RRep back to
the source.

Finally, the source node obtains several routes to reach the
destination. We will explain more precisely this mechanism in
the section III-B.

S A B D

broadcast S S,A S,A,B

S,A,B,DS,A,B,DS,A,B,D

data sent S,A,B,D S,A,B,D S,A,B,D

unicast
RRep

RReq

Fig. 1. Route Discovery mechanism of the DSR protocol.

B. Route Maintenance

In an Ad hoc network, the nodes are mobile, that is why
before sending data, we need to make sure that the topology
has not changed and that a source node may use a route to

reach a destination D. Route Maintenance is a succession
of three conditional procedures. First, DSR requests to the
link layer to insure the maintenance. When this latter can not
insure it, the node listen to every packet in its radio range
to determine whether the links are still available. Finally, the
confirmation of receipt in many cases may easily be provided,
either as an existing standard part of the MAC protocol in
use (such as the link-level acknowledgement frame define by
IEEE 802.11) or by passive acknowledgement. Then, when the
link state is denoted as broken, the corresponding node sends
a Route Error to the source node.

The Ad hoc networks topologies rapidly change since the
intermediate nodes to reach a destination from a source may
move and their number be changed. All these changes must
be taken into account in order the implementations to be
conformed to the standard [1]. That is why it is necessary to
apply conformance testing steps at the beginning of the pro-
tocol development phase. This is the subject of the following
section.

III. THE DSR PROTOCOL SPECIFICATION

A. The SDL language

The Specification and Description Language SDL standard-
ized by ITU-T [10] is widely used to specify communicating
systems and protocols. This language has evolved according
to user needs. It provides new concepts needed by designers
to specify systems more and more complex. SDL is based
on the semantic model of Extended Finite State Machine
(EFSM) [12]. Its goal is to specify the behavior of a sys-
tem from the representation of its functional aspects. The
description of the functional aspects is provided at different
abstraction levels. The most abstract is the one describing
the system, while the lowest is the specification of abstract
machines composed by signals, channels, tasks, etc. Two
kinds of properties may describe these functional aspects: the
architectural and behavioral properties. The first one denotes
the architecture of the system, that is the connection and orga-
nization of the elements (blocks, processes, etc.). The second
one describes the behaviors of the entities after an interaction
with the environment. These reactions are described by tasks,
transitions between states, and are based on the EFSMs.

A verification on local variable values imposes a condition
(predicate) on moving to the next state. The actions associated
with a transition include: verification on local variable (that
can impose conditions, predicates, to move to the next state),
the execution of tasks (assignment or informal text), procedure
calls, dynamic creation of processes in order to include new
mobile nodes into a system for instance (SDL contains the con-
cepts of “type” and “instance of type”), arming and disarming
timers, etc. SDL supports objects that permit to define generic
types that could be validated and used in different contexts. It
also supports ASN.1 [13], a standard defined for data transfer.
Specifically, data are defined as abstract data type.

B. Specification of DSR

In this section, we describe the DSR protocol specification
modelled using SDL. The SDL model has been designed in



3

such a way that it is very easy to add, remove and observe
functionalities. The specification follows the IETF draft [1]
and each messages, tables, route caches information have been
scrupulously respected. Nevertheless we did not specify all
the features described in this draft, indeed, at the end the
verification of the whole specification would be very long.
Therefore, we have specified the relevant basic and additional
features such as:

• Basic and additional Route Discovery features,
• Basic and additional Route Maintenance features (sal-

vage, route shortening, etc.),
• Some conceptual data structures: Route Cache, Send

Buffer, RReq and gratuitous RRep tables,
• The DSR options header format.

Besides we did not specify the flow state extension, the
security concepts, and how to support multiple interface. It is
currently carried out as the future works.

Our system includes N blocks denoting the nodes of a
network. These N blocks describe the protocol behavior as
we will detail further. They are dynamically generated by a
block type, that is each node is an instance of this block type.
Therefore, we may provide by this manner any number of
nodes we wish, and then as well a small or a big network. This
block type is linked to another block named Transmission (see
Figure 2) that takes care of transmitting the messages from one
node to another.

Fig. 2. The DSR protocol system specification.

The role of this previous block is to receive the packets and
send them in unicast or broadcast in the network generated by
the N nodes. It provides the mobility of each node and manage
the topology of the wireless network by opening or closing
some links between any nodes. This system allows to simulate
a wireless Ad hoc network efficiently even whenever a very

small change in position occurs that leads to a significant
change in connectivity.

In our system, each mobile node is represented by three
connected processes called USR, IP and DSR as illustrated by
the Figure 3.

Fig. 3. The node specification in our network.

The first process is the one connected to the environment,
it receives the necessary information in order to set up the
network (number of nodes, topology, etc.) by initializing one
or several packets. The process IP is in charge of encapsulating
the information provided in the packets by the USR process,
in a new IP packet. While the last process DSR represents
the behavior of DSR protocol including the two mentioned
mechanisms Route Discovery and Route Maintenance. Within
these nodes, three main data structures have been specified:

• the Route Cache that is a table containing every learned
route between nodes,

• the Send Buffer that is a list of cached IP packets
with DSR headers when a route to a destination is still
undiscovered or a link has been broken,

• the Route Request Table that contains every Route Re-
quest packet information.

Through these nodes, different kind of packets are trans-
mitted by using unidirectional or bidirectional links (the en-
vironment of the system will set them at the beginning of a
simulation). The Route Request (RReq) packet as mentioned in
II-A, contains a list of addresses updated by each met node.
The Route Reply (RRep) packet is the response to a RReq
arrived to the destination. This packet is sent to the initiator
of the RReq using the Route Cache or by piggybacking in
a new RReq to the source. The specification also enables to
piggyback other small data packets such as TCP SYN packet,
on a RReq using the same mechanism. The packet Source
Route (SrcR) is finally used to transmit data once a route is
known. All these packets and the others in the network are
specified using ASN.1 carried by SDL signals as illustrated in
the following for a SrcR packet.



4

NEWTYPE SourceRoute T STRUCT
option type,
data len Integer;
F,
L Boolean;
salvage,
segs left Integer;
address AddressList T;
ENDNEWTYPE;

We do not detail the different fields composing the Source
Route packet. However it allows to see that the signals carry
many variables contained in various ASN.1 types, that are built
in particular from lists and tables.

In order to describe the whole behavior of our network
(using the IP layer), many processes have been specified. The
DSR protocol specification is made of approximately 5000
lines of SDL. To give a general idea of the complexity of the
SDL system specification, we present by the Figure 4 some
significant metrics of the global system.

Lines 5168
Blocks type 6

Blocks 13
Processes type 12

Processes 6
Procedures 38

States 114
Signals 23

Macro definitions 6
Timers 3

Fig. 4. Metrics of the DSR protocol specification.

We have to note that such a specification may contain
few errors during its design even from the requirements. For
this reason we have used model checking techniques [14] in
order to verify our specification concerning the three purposes
mentioned in the next section. Indeed, before validating an im-
plementation we need to make sure that the used specification
corresponds to the requirements.

Therefore, In order to simulate the network, we use a
configuration file containing some information provided to the
USR process. It initializes some variables such as the number
of active nodes and the different possible topologies. First in
analyzing the EFSM and its reachability graph, we verify that
the specification is free from deadlocks and livelocks within
the simulated space. Indeed, the presence of such deadlocks
or livelocks reveals that the DSR protocol system does not
behave as expected.
For the generation of the test scenarios, we have used a test
scenario generation method described in the following section.

IV. THE TEST OF THE DSR PROTOCOL

A. Test scenarios generation

Our main objective is to generate a set of scenarios to test
some expected properties of the system implementation. These
properties are expressed as test purposes. In order to produce

the scenarios we apply a test tool that we have developed at
INT. The generation procedure is completely automated and
follows the following main steps:

• Step 1. To obtain a precise and concise formal specifica-
tion of the system to be tested. This specification takes
into account the system functionalities as well as the data
specific to the test (test architecture, test interface, etc.).
We use the SDL specification of the DSR protocol system
described in the previous section.

• Step 2. To select the appropriate tests. This selection
can be performed according to different criteria. This
step corresponds to the definition of the test purposes:
a test purpose can be a specific property of the system or
the behavior of a specific component of the system (for
instance node behavior).

• Step 3. To generate the test scenarios. The test purposes
are used as a guide by an algorithm based on simulation
to produce the test scenarios. As a result, our algorithm
calculate a test scenario that applied to the implementa-
tion under test, verifies the test purpose. A scenario is
a sequence of interactions (between the system and the
environment) that includes the interactions that represents
a test purpose. This algorithm has been implemented in
our tool called TESTGEN-SDL [2].

• Step 4. To format the tests. That is, to produce test
scenarios in some accepted formalism. In our case, test
scenarios are produced in Message Sequence Charts
(MSC), a formalism widely used in industry to describe
processes messages exchanges, and in Tree and Tabular
Conformance Notation (TTCN), the ITU-TS standard
language used for test specification [15].

B. Experimentation results

In this section, we present the experimentation results of the
application of our method and tool to the DSR protocol system
and particularly the Route Discovery mechanism as detailed in
the following. We have initialized the specification via the USR
process in order to obtain the network configuration illustrated
by the Figure 5.

(D,C)
(D,E,C)

A

ED

B C The link is broken after
15 seconds during the simulation

The Route Cache table of node D

Fig. 5. Network configuration.

Five nodes have been instantiated in which all the Route
Caches are empty except for the node D containing the routes
(D,C) and (D,E,C). The destinations and the sources from
where the data have to be sent are randomly generated.

The component in charge of specifying the Route Discovery
aspects contains many processes and therefore many functions



5

are executed in this module. In order to generate test scenarios,
we need to define test purposes. We focused here on the
following three test purposes that may be provided by a DSR
implementation for the route discovery mechanism:

• Test purpose 1: To test that the Route Cache table of each
instantiated node is consulted whenever a RReq is sent;

• Test purpose 2: To test that the Send Buffer of node
A is used three times for each contained packet before
discarding them;

• Test purpose 3: To test that the field “number of con-
secutive initiated Route Discoveries for one destination”
of the Route Request Table is updated whenever a node
receives a valid RRep.

These three test purposes may reveal some crucial errors
into an implementation of a DSR protocol. Indeed, they allow
to detect some errors during the Route Discovery mechanism.
Firstly, we want to make sure that the Route Cache is de-
manded for each Route Request which is crucial for an on-
demand routing protocol. Therefore, that the Send Buffer is
properly used and the Route Request Table correctly updated
after receiving a RRep.
Let us notice that the test purposes given above are usable for
any network configuration. Moreover, we may generalize our
current configuration by modifying the connectivity of every
link between the nodes.
After application of the test generation procedure, a test
scenario is produced for each one of the test purposes. The
results obtained are illustrated in the Figure 6.

Test purpose Test scenario length Duration
]1 36 219s
]2 11 28s
]3 14 32s

Fig. 6. Results obtained.

Once all the tests purposes have been exercised, we can
merge them in a single test scenario. The obtained scenario
is of a length of 61 transitions and the execution time for its
generation is relatively short (on a Sun Sparc Ultra 5). Let
us note that the generated test scenario includes the behavior
of other components (such as Transmission or USR). Notice
also that we have generated one test scenario for each test
purpose. Figure 7 presents a part of the obtained test scenario
and in Figure 8 the corresponding generated MSC (see Step
4 in section IV-A).

This scenario shows the test of the second test purpose
which is in bold in the Figure 7. The scenario is generated until
the two other test purposes are achieved. In this scenario we do
not detail the Preamble(1) which is the scenario allowing
to reach the component specifying Route Discovery. We also
note that many tasks are carried out between each state. This
modifies the values of the variables. Further, with these values,
this test scenario may be applied on a real implementation of
the DSR protocol in order to find erroneous behaviors of the
implemented protocol.

V. CONCLUSION

This paper has presented a validation model for the DSR
protocol. It includes a formal specification of the protocol,
a method and a tool for the automated test generation of
scenarios. This validation model presents several advantages.
First, the design of a formal specification from which tests
are generated contributes to eliminate design errors and ambi-
guities. And, in particular, this formal model is well adapted
for the description of DSR, it takes into account one of the
main characteristics of ad hoc networks : nodes can be added
and eliminated in a dynamic way. Secondly, the use of test
purposes for test generation can be very useful to meet user
requirements. Also, automated test generation is less costly
that tests written manually, reducing the time to market. And
finally, the test scenarios we have generated can be re-used for
non functional testing such as system capacity and response
time testing. And the proposed methodology can be applied
to large-scale system and be easily applied to extended ad hoc
networks. As a perspective, we are working on this last point,
that is we are starting to apply our methodology on a real ad
hoc network executing a real DSR implementation. Also, we
are currently specifying the DSR features that were not in our
work such as flow state extensions, etc.

REFERENCES

[1] D.B. Johnson, D.A. Maltz, and Y.-C. Hu, “The dynamic source routing
protocol for mobile ad hoc networks (dsr),” Internet-Draft, draft-ietf-
manet-dsr-09.txt, April 2003, Work in progress.

[2] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaidi, “Hit-or-jump: An
algorithm for embedded testing with applications to IN services.,” in
Formal Methods for Protocol Engineering and Distributed Systems,
FORTE XII / PSTV XIX’99, Jianping Wu, Samuel T. Chanson, and Qiang
Gao, Eds. 1999, vol. 156 of IFIP Conference Proceedings, Kluwer,
Beijing, China.

[3] C. Adjih, T. Clausen, and P. Jacquet et. al., “Optimized link state routing
protocol,” Internet-Draft, draft-ietf-manet-olsr-08.txt, March 2003, Work
in progress.

[4] S. Das C. Perkins, E. Royer, “Ad hoc on demand distance vector
(aodv) routing,” Internet-Draft, draft-ietf-manet-aodv-13.txt, February
2003, Work in progress.

[5] V. Park and S. Corson, “Temporally-ordered routing algorithm (tora)
version 1,” Internet-Draft, draft-ietf-manet-tora-spec-04.txt, July 2001,
Work in progress.

[6] Z.J. Haas, M.R. Pearlman, and P. Samar, “The zone routing protocol
(zrp) for ad hoc networks,” Internet-Draft, draft-ietf-manet-zone-zrp-
04.txt, July 2002, Work in progress.

[7] J. Broch, D.A. Maltz, and D.B. Johnson, “A performance comparison
of multi-hop wireless ad hoc network routing protocols,” in the Fourth
Annual ACM/IEEE International Conference on Mobile Computing and
Networking, October 1998, pp. 85–97.

[8] A. Cavalli, B. Chin, and K. Chon, “Testing methods for SDL systems.,”
in Computer Networks and ISDN Systems., 1996, vol. 28, pp. 1669–
1683.

[9] D. Rouillard and R. Castanet, “Generate certified test cases by com-
bining theorem proving and reachability analysis,” in Proceeding of
IFIP TC6 /14th International Conference on Testing of Communicating
Systems TESTCOM 2002, March 2002, pp. 249–266.

[10] ITU-T, “Recommandation Z.100: CCITT Specification and Description
Language (SDL),” Tech. Rep., ITU-T, 1999.

[11] D.B. Johnson and D.A. Maltz, Dynamic Source Routing in Ad Hoc
Wireless Networks, chapter 5, pp. 153–181, Kluwer, tomasz imielinski
and hank korth edition, 1996.

[12] D. Lee and M. Yannakakis, “Principles and Methods of Testing Finite
State Machines - a Survey,” in The Proceedings of IEEE, August 1996,
vol. 84, pp. 1090–1123.

[13] O. Dubuisson, ASN.1, Springer, 1999.
[14] Verilog, ObjectGEODE Simulator, 1997.
[15] ETSI. TTCN-3, TTCN-3 – Core Language.



6

ri/NULL @ (0,"NULL/started procs",1).
Preamble(1) @ (1,‘‘dst addr(105)/data packet(addr.out)’’,2).
(2, ‘‘data packet(addr.out)/ip packet(ip.out)’’,3).
(3, ‘‘ip packet(ip.out)/DSR header(ip packet!information)’’,4).
(4, ‘‘DSR header(RReq options)/ip packet(ip.in),fillsendbuffer(ip.in)’’,5).
(5, ‘‘sendbuffertimeout(30)/DSR header(ip packet!information)’’,4)
(5, ‘‘searchsendbuffer(ip in)/sendbufferdiscard(ip in)’’,7).

Fig. 7. A part of the generated test scenario.

Fig. 8. An MSC from test scenario generation.


