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Abstract: Testing a component embedded into a complex system, in which all other components are assumed fault-free, is known as embedded testing. This paper proposes a method for minimizing a test suite to perform embedded testing.  The minimized test suite maintains the fault coverage of the original test suite with respect to faults within the embedded component. The minimization uses the fact that the system is composed of a fault-free context and a component under test, specified as communicating, possibly non-deterministic Finite State Machines (FSMs). The method is illustrated by an example of telephone services on an Intelligent Network (IN) architecture. We also discuss other applications of the proposed approach for testing a system of communicating FSMs.
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1 Introduction

Virtually all complex systems today have a modular design, being made up of several components. When testing a behavior of such a system, it is frequently the case that many of its components have already been thoroughly tested or are not critical to the system. In particular, interoperability tests can serve as an example. In that sense, we can view a system under test as composed of two parts: the component that requires testing (the embedded component) and other components assumed fault-free (the context). Testing a component embedded into a complex system is known as gray box testing, embedded testing [1, 2] or testing in context [3].

A number of methods for deriving tests for an embedded component have been developed recently, in particular, when the system is composed of communicating Finite State Machines (FSMs) [for a survey, see for example, 4]. Some of these methods return a test suite that satisfies appropriate test purposes and do not guarantee complete fault coverage [5-7]. Other methods [2, 3, 8] deliver complete test suites w.r.t. an appropriate fault domain, i.e. a set of all possible implementations of the component under test, but they are known to return many redundant tests in some cases. Additional research is needed regarding their checking capabilities in order to develop methods for their minimization. 

This paper integrates the results of the papers [2, 9-11] for minimizing tests for an embedded component when the system is specified as a collection of communicating, possibly non-deterministic, FSMs. The initial test suite can be derived by formal methods [see, for example, 12-15] or given by human experts. In this paper, a method is proposed that returns a proper subset of the test suite that has the same fault coverage w.r.t. faults within the embedded component FSM. The reference output response to each test case is obtained by simulating a behavior of the reference system without deriving a global reachability graph. 

Intuitively, a test case can be removed from a given test suite if the test case only concerns the context or if there is another test case that detects the same set of faulty implementations of the embedded component FSM. The idea behind the approach is to identify the fault detection power of each external test case based on internal traces that can be induced in an arbitrary implementation system when the test case is submitted. In this paper, given a test suite, the relation is established between each test case of the test suite and a regular set comprising each trace of an implementation of a component under test that can be detected with the test case. The problem of test minimization is, thus, reduced to the well known problem of comparing regular sets [16]. This paper suggests a straightforward approach for test suite minimization by explicit enumeration of test cases and extends the results for testing a system of non-deterministic FSMs w.r.t. the reduction relation. Other applications of the proposed approach also are discussed.
The rest of the paper is organized as follows. Section 2 presents some basic notions. Section 3 gives the problem statement while Section 4 describes a procedure for deriving a regular set of traces of the embedded component FSM which can be detected with a given external test case. Section 5 analyses conditions under which a test case can be removed from a test suite without a loss of its completeness w.r.t. faults within an implementation of the embedded FSM and presents procedures for test minimization based on the obtained sufficient conditions. Section 6 comprises the example of testing telephone services. Other possible applications of the proposed approach for testing a system of communicating FSMs are briefly discussed in Section 7.

2
Preliminaries

The section below briefly sketches the notions of an Input/Output finite state machine and a composition of such machines. 
2.1 I/O Finite state machines 

An Input/Output finite state machine (often simply called an FSM or a machine throughout this paper) is initialized complete, possibly non-deterministic, FSM, denoted by a 5-tuple A=(S,X,Y,h,s0) where S is the finite set of states with s0(S as the initial state, X is the input alphabet, Y is the output alphabet, while h is the behavior function h: S(X(P(S(Y) where P(S(Y) is the set of all nonempty subsets of the set S(Y. The function h has two projections: next state function hs and output function hy. A machine A is observable [17] if for all (s,x)(S(X and y(Y it holds that |hy(s,x)|(1. In this paper, only observable machines are studied, since for each non-deterministic FSM there exists an equivalent observable machine [17]. A machine A is deterministic if |h(s,x)|=1 for all (s,x)(S(X. In the usual way, the function h is extended to the set S(X* with results in the set P(S(Y*) where X* is the set of all finite input sequences containing the empty sequence (. The result of the output function hy(s,() is the set of output sequences produced by the FSM at state s when the input sequence ( is applied. 
Given sequences (=x1...xk(X* and (=y1...yk(Y*, the sequence x1y1. ... .xkyk is called a trace over alphabets X and Y and is denoted (*(. Input/Output pairs of the sequence are separated by “.”. Given a machine A=(S,X,Y,h,s0), a trace (*( over alphabets X and Y is called a trace of machine A if ((hy(s0,(). Given a trace over alphabets X and Y the X-projection of the trace is obtained by deleting from the trace each symbol that is not in alphabet X.
Given FSMs A and B over the same input and output alphabets, FSM A is said to be a reduction of FSM B, denoted A(B, if the set of traces of FSM A is a subset of that of FSM B. Machines A and B are said to be equivalent, A(B, if the sets of traces of FSMs A and B coincide. 

2.2 Composition of FSMs

Consider a system composed of several FSMs Ai, i=1, ..., k. A component FSM is called an embedded FSM if the component FSM has no external inputs and outputs. At any time the system has at most one message in transit, i.e. all the alphabets are pair wise disjoint and the environment submits the next input only when the system has produced an output to the previous input. Under this assumption, a component machine accepting an input produces either an external or a single internal output. If the component machines fall into infinite internal dialog when an appropriate external input sequence is submitted, then the system is said to fall into live-lock under the input sequence and the composite FSM does not exist [3]. 

The algorithm for simulation a behavior of the system w.r.t. an external input sequence is based on derivation of a partial reachability graph induced by the input sequence [2] that then is projected on external alphabets. The composite FSM RM=(Ci (if it exists) can be derived from the global reachability graph. In this paper, a proposed approach is illustrated by a simple working example that has communicating FSMs A, B and media M through which component machines A and B communicate (Figures 1 and 2). Media M has no external inputs and outputs and can be considered as an embedded component FSM. We do not use the composite machine. The reference external output response to an external input sequence is obtained by simulating a behavior of the reference system under the input sequence, i.e. without deriving the composite machine..
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Figure 1. System under test.
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Figure 2. Component FSMs A (a), M (b) and B (c).
2.3 Complete test suites for I/O FSMs

One important aspect of high quality test generation is to specify an appropriate fault model. In this paper, a reference system and a system under test (SUT) are modeled by a system of communicating FSMs specified over the same input and output alphabets whose collective behavior can be described by a composite FSM. Moreover, only one embedded component machine, called the embedded component, can be faulty while other component FSMs, called the context, are fault-free. An FSM modeling the reference system is the reference FSM while the set ( of FSMs modeling all possible implementation systems is the fault domain. An FSM of set ( is called an implementation. The implementation FSM IM(( is called conforming over the reduction (equivalence) relation if IM is a reduction of (or is equivalent to) the specification FSM RM. If an implementation is not conforming then it is called a faulty or a nonconforming implementation (over a corresponding relation). 

A finite set of finite input sequences of the reference machine RM is a test suite if it detects at least a single nonconforming implementation. A test suite which detects all nonconforming implementations of the set ( is called a complete test suite w.r.t. the fault domain ( over an appropriate conformance relation. Thus, if a system under test is modeled by an FSM IM(( and is not detected by a complete test suite w.r.t. ( then one concludes that the system is a reduction of (or is equivalent to) the reference system, i.e. a behavior of the system is contained in (or coincides with) that of the reference system under all input sequences.

It is known [8] that when testing a system with a non-deterministic behavior each test case usually is submitted to a system under test several times, under diverse conditions, until a test engineer verifies the system has produced each possible output to the test case. Under this widely used fairness-assumption one can use the same method for testing deterministic and non-deterministic implementations. 

3 The problem statement

Consider a reference system composed of k deterministic FSMs, C1, ..., Ck, and assume that only embedded component FSM Ci can be faulty, while any other component FSM is fault-free. Moreover, it is supposed that the composite FSM exists. The issue of testing a modular system w.r.t. live-locks is out of the scope of this paper. If a system is tested as a whole, the component FSM Ci will certainly be tested. However, that will unnecessarily test all the fault-free modules. The key advantage of using embedded testing techniques is that they allow the tester to focus only on the module that needs testing.  

Embedded testing is known to be more complex than testing an isolated FSM, since controllability and observability of the embedded component machine deteriorate compared with those in isolation. Existing techniques for embedded testing return a test suite that usually includes superfluous test cases or a test suite with unknown fault coverage. In this paper, a given test suite for an embedded FSM is reduced (if possible) without a loss of its power to detect faulty component implementations. 

Problem statement. Given a complete test suite TS for the reference FSM RM=(Cj w.r.t. the fault domain (, let ( be the set containing each FSM of the fault domain ( that is a composition of the component FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is an implementation of Ci. It is required to determine a minimum proper subset P(TS that is complete w.r.t. the fault domain (. Notice, since for real systems the fault domains ( and (  may be huge, explicit enumeration of all possible implementations is usually not practical.

4 Detecting faults within a component machine with an external test case

In this section, the formal relation is established between an external test case and the set of nonconforming implementations of an embedded component FSM that are eliminated with the test case. 

4.1 Detectable traces 

A relation between an external test case and faults in a component machine which can be detected with the test case is illustrated by a simple example. Consider the composition of FSMs A, B and M shown in Figure 1 and external input sequence x1x1. Suppose that the machines A and B have been roughly tested in isolation and it is interoperability between A and B that must be tested, i.e. only FSM M can be faulty. The reference composition has external output response y1o2 to x1x1. The question arises which faults in the implementation IM of the component FSM M can be detected with the external test case x1x1. 

Let x1 be applied when component FSMs A and B are at their initial states a and 1. The component FSM B at the initial state 1 produces external output y1 and enters state 2. Thus, the implementation system produces the output y1 while component FSMs A and M remain at the initial states a and C when input x1 is submitted. The result does not depend on an implementation of the component FSM M, since M is not involved [2]. When the next input x1 is applied to the implementation system the component FSM B produces internal output w and comes back to state 1, i.e. the system enters a transient state such that component FSMs A and B are at states a and 1. If implementation IM of the component FSM M at the initial state replies to input w with output z then the component FSM A produces the expected external output o2. However, if the implementation machine IM at the initial state produces the output v to w then FSM B produces an unexpected external output y1 to v. Thus, a faulty implementation IM of the component FSM M can be detected with external test case x1x1 if and only if the IM has a trace w/v. If the IM has no trace w/v, then the system with the implementation IM will reply with the expected external output sequence y1o2 to the test case x1x1 (Figure 3).

The above example clearly shows that given an external test case and a component under test, all faults detected within the component machine with the given test case can be described as a regular set of traces. A faulty implementation of the embedded component FSM can be detected with the external test case if and only if the set of its traces intersects the regular set. 
4.2 Representing the set of detectable traces by a regular expression

Given embedded component FSM Ci that can be faulty, and an external input sequence x1…xm, an acceptor F(x1…xm) is derived that represents all possible system traces which can occur when the input sequence x1…xm is applied, and recognizes by a designated state Fail those that imply an unexpected behavior of the system. Acceptor F(x1…xm) is derived based on fault-free FSMs C1, …, Ci-1, Ci+1, …, Ck and is then projected onto Input/Output (I/O) pairs of the component Ci in the usual way. I/O pairs of the components C1, …, Ci-1, Ci+1, …, Ck are replaced with the empty word. To determinize the obtained acceptor we use a subset construction and replace each subset having the state Fail by a designated state Fail without outgoing transitions. 


The state set of the acceptor F(x1…xm) is a subset P of Q1(…(Qi-1(Qi+1(…(Qk({0,…,m}, where Qj is the state set of the component FSM Cj while integer j({0,…, m} shows the sequence of composition states after applying the (j+1)th symbol xj+1 of the input sequence x1…xm.  States of the set P are divided into stable and transient states. By definition, the initial state (q10 ... qk0)0 is stable. Otherwise, the state is stable if it has an incoming transition with an external output. The stable states cannot be merged with transient states. Two transient states with the same names are merged if they have an incoming transition labeled with a pair with the same output part. We start from the initial state (q10 ... qk0)0.


Given a state (q1i ... qki)j, let a/b be an I/O pair of the component Ci of interest. 

i) If b is the expected external output to input xj+1, then a/b takes the acceptor from state (q1i ... qki)j to a stable state (q1i ... qki)(j+1).

ii) If b is an unexpected external output to input xj+1, then a/b takes the acceptor from state (q1i ... qki)j to the designated state Fail. 

iii) If b is an internal output, then a/b takes the acceptor from state (q1i ... qki)j to a transient state (q1i ... qki)j. 


Let a/b be an I/O pair of the component FSM Cj different from Ci.

i) If b is the expected external output to input xj+1, then a/b takes the acceptor from state (q1i … qji … qki)j to a stable state (q1i … q(ji … qki)(j+1). Here q(ji is the state where the I/O pair a/b takes the component FSM Cj from the state qji. 

ii) If b is an unexpected external output to input xj+1, then a/b takes the acceptor from state (q1i ... qki)j to the designated state Fail. 

iii) If b is an internal output, then a/b takes the acceptor from state (q1i … qji … qki)j to a transient state (q1i … q(ji … qki)j.
 


By construction, given a test case (, the acceptor F(() comprises each trace that can be induced within a SUT when each component FSM different from Ci, is fault-free and the external input sequence ( is applied to the system. All the traces which take the acceptor from the initial state to the designated state Fail imply an unexpected output response of the SUT to (, thus, if the SUT has at least one such trace it is detected by the external test case (. On the other hand, the SUT has a trace ( that takes the acceptor from the initial state to the designated state Fail if and only if the implementation of the component FSM has a trace that is a projection of ( onto I/O pairs of the Ci. We denote by D(() the set of projections onto I/O pairs of the Ci of all traces which take the acceptor F(() from the initial state to the designated state Fail. Since the projection operator preserves a regular language, the set D(() is regular, i.e. can be represented by a finite acceptor [16]. Therefore, the following statement has been established.


Theorem 1. Given an external input sequence (, a system of FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is the implementation of Ci, has an unexpected output response to ( if and only if the implementation Impi has a trace of the regular set D((). 

5 Test suite minimization

Theorem 1 gives a guide regarding which part of a behavior of a component FSM can be tested with a given test suite. In this section, procedures are proposed for test suite minimization without a loss of the fault coverage of the test suite w.r.t. faults within the embedded component FSM over the reduction and equivalence relations. 

5.1 Test suite minimization for a component FSM over the reduction relation

The following statement holds, as a corollary to Theorem 1.
Theorem 2. Given a complete test suite TS for the reference FSM RM=(Cj w.r.t. the fault domain ( over the reduction relation and test case ((TS, let ( be the set containing each FSM of the fault domain ( that is a composition of the component FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is an implementation of Ci. The test suite TS\{(} is complete w.r.t. the fault domain ( over the reduction relation if for each trace ((D((), there exists a test case ((TS\{(} such that ( is a prefix of some element of D((). 

In other words, if a test case ( of a given test suite TS satisfies the conditions of Theorem 2 then ( can be removed from the test suite without a loss of its fault coverage w.r.t. faults within the component of interest. 

Based on Theorem 2 a straightforward procedure for test minimization for the embedded component FSM Ci can be proposed. The test cases of a given a test suite TS for a system of communicating FSMs are enumerated. If each trace detectable with test case (j also is detected with some test case (i, i<j, then the test suite TS\{(j} detects the same set of faulty implementations of the component FSM Ci over the reduction relation as the initial test suite TS , i.e. (j can be removed from the test suite. 

The resulting reduced test suite may essentially depend on the order of the test cases in the set TS. This drawback can be eliminated when each regular set, D((), ((TS, is finite. In this case, the problem of determining a minimal subset of a given test with the same fault coverage reduces to the problem of deriving a minimal cost cover of a Boolean matrix [10]. The problem is well known and there exist a number of techniques to derive the best solution. Recent publications present methods that may work efficiently with matrixes having thousands row and columns [18].

Given test suite TS = {x1x1; i1x2i2i2; i1i1i2x2; i1i1i2i2; i1x1x1} for the composition in Figures 1 and 2, regular sets for all test cases for a component FSM M are as follows: 


By direct inspection, one can verify that the subset {x1x1, i1x2, i1i1}of TS detects the same set of faults in an implementation of FSM M as the initial test suite TS. 

Theorem 2 establishes a sufficient condition for a subset of a given test suite to preserve the fault coverage for a component FSM over the external reduction relation. However, the conditions of Theorem 2 become insufficient when the reference FSM is non-deterministic and the fault coverage must be preserved over the external equivalence relation. In this case, it is insufficient for an implementation system to produce only the expected output responses to each test case but a reduced test suite must also accept all possible behaviors accepted by the initial test suite. That property is analyzed in the following section. 

5.2 Test suite minimization over the equivalence relation
Given embedded component FSM Ci that can be faulty, an external input sequence (=x1…xm and external output sequence (=y1…ym that is in the set of output responses of the reference system to the (, an acceptor F((,() is derived. The acceptor F((,() represents all possible composition traces when input sequence ( is submitted, and those of them that imply the external output response ( are recognized by a designated state Succ. Acceptor F((,() is then projected onto I/O pairs of the component Ci. R((*() denotes the regular set of the projection represented by the state Succ. If a system under test produces an output response ( to the sequence (, one concludes that the set of traces of the component implementation intersects the set R((*(). 

The state set of the acceptor F(x1…xm*y1…ym) has the same structure as that of the acceptor F(x1…xm) in Section 4.2. Given a state (q1i ... qki)j and I/O pair a/b of the component Ci of interest, a/b takes the acceptor from state (q1i ... qki)j to a stable state (q1i ... qki)(j+1) if b=yj+1. If b is an internal output then a/b takes the acceptor from state (q1i ... qki)j to a transient state (q1i ... qki)j. If a/b is an I/O pair of the component FSM Cj different from Ci then a/b takes the acceptor from state (q1i … qji … qki)j to a stable state (q1i … q(ji … qki)(j+1) if b=yj+1. Here q(ji is the state of Cj reached from qji through the transition with input/output pair a/b. If b is an internal output then a/b takes the acceptor from state (q1i … qji … qki)j to a transient state (q1i … q(ji … qki)j. All the stable states (q1i ... qki)m are replaced with the designated state Succ. Similar to Theorem 1, the following statement is established.


Theorem 3. Given an external input sequence (, let the reference system have an output response ( to (. An implementation system of FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is an implementation of Ci, has the output response ( to ( if and only if the set of traces of the implementation Impi intersects the regular set R((*().



The above construction is illustrated by the working example where machine M is now non-deterministic (Figure 4). By direct inspection, one can verify that the set D(x1x1) is empty, i.e. can be removed from any test suite without a loss of its fault coverage w.r.t. faults of the component FSM M over the reduction relation. Moreover, R(x1x1*y1o2) = {w/z} and R(x1x1*y1y1) = {w/v}.  


Theorem 4. Given a complete test suite TS for the reference FSM RM=(Cj w.r.t. the fault domain ( over equivalence relation and a test case ((TS, let ( be the set containing each FSM of the fault domain ( that is a composition of the component FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is an implementation of Ci. The test suite TS\{(} is complete w.r.t. the fault domain ( over the equivalence relation if the following two conditions hold:

(i) For each trace ((D((), there exists a test case ((TS\{(} such that ( is a prefix of some element of D(().

(ii) For each trace (*( of the reference FSM, the latter has a trace (*(, ((TS\{(}, such that each trace of the set R((*() has a prefix in the set R((*().  


Proof. Let IS be the implementation system of communicating FSMs C1, …, Ci-1, Impi, Ci+1, …, Ck where Impi is the implementation of Ci. Let also the IM be detected by (, i.e. the set of output responses of the FSM IM to ( does not coincide with that of the reference FSM RM. Two cases are possible: 1) The set of output responses of the FSM IM to ( is not contained in that of the reference FSM; 2) The set of output responses of the FSM IM to ( is contained in that of the RM but the reference FSM has a trace (*( that is not a trace of the IM.


In the former case, due to condition (i) of Theorem 4 and Theorem 1, the set TS\{(} has a sequence ( such that the set of output responses of the FSM IM to ( is not contained in that of the RM, i.e. ( also detects the nonconforming implementation IS. In the second case, the set of traces of the machine Impi does not intersect the set R((*() (Theorem 3). Then it also does not intersect the set R((*(), i.e. the set of output responses of the FSM IM to ( does not have the reference output (; therefore, ( detects the nonconforming implementation IS.

Q.E.D.


Since for a deterministic FSM the reduction and equivalence relations coincide, Theorem 4 reduces to Theorem 2 in the case when the reference FSM is deterministic.


Based on Theorem 4, we propose a procedure for test suite minimization.


Figure 5. Algorithm of test suite minimization for the embedded component over the equivalence relation

Notice again the result returned by the above procedure also may essentially depend on the order of the test cases in the set TS. If each regular set D((), ((TS, is finite the drawback can also be eliminated by deriving a minimal cost cover of a Boolean matrix. 

In this case, given a test suite TS, let D(TS) be the union of all sets D((), ((TS, while R(TS) be the collection of sets R((*()(( over all ((TS such that there exist at least two different reference external output responses to (. Rows of the Boolean matrix B correspond to prefixes of all sequences of the set TS; columns of B correspond to items of the collections D(TS) and R(TS). The element corresponding to prefix ( of a test case and trace ((D(TS) has value “1” if and only if D(() has a prefix of (. The element corresponding to prefix ( of a test case and an item R((*() has value “1” if and only if there are at least two reference outputs to ( and there exists a reference external output ( to ( such that each sequence in the set R((*() has prefix in the set R((*(). The cost of a row is length of the corresponding test sequence. A column cover of the matrix B of minimal cost is a minimal subset of the test suite TS with the same fault power.

For the working example with non-deterministic component FSM M, all the sets D(() are finite and we minimize the test suite TS = {x1x1, i1x2i2i2, i1i1i2x2, i1i1i2i2, i1x1x1} deriving a column cover with minimum cost for the corresponding Boolean matrix. By direct inspection, one can verify that we must include test cases x1x1 and i1x2i2i2 into the reduced test suite since for each test case there exists a column of the matrix that has the only value “1”. The shortest test case i1i1 detecting the trace u/z.u/z is also included. The reduced test suite {x1x1, i1x2i2i2, i1i1} detects the same set of faulty implementations of the component FSM M as the initial test suite TS = {x1x1, i1x2i2i2, i1i1i2x2, i1i1i2i2, i1x1x1} over the external equivalence relation. 
6 Telephone services example
The approach proposed above is demonstrated by testing a system composed of telephone services. There are three subscribers in the system, A, B and C. A possesses the Original Call Screening (OSC) service (Figure 6b) and C is listed in the OCS. B possesses the Call Forward Unconditional (CFU) service and forwards his calls to C. Thus, the system consists of three Basic Call Services, BCSA, BCSB and BCSC, OCS and CFU. The approach is illustrated by testing OCS in the context of the BCS and CFU. The I/O FSMs modeling the services have been obtained from SDL specifications of the system [9]. Assume that the OCS is the new service to be added to the network and the subscribers and the CFU services have already been tested, i.e. their collective behavior is the context (Figure 6a) for the OCS implementation to be tested. The composite reference FSM is shown in Figure 6c.
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Figure 6. Telephone services FSMs: Context FSM (a); OCS FSM (b) and the composite FSM (c).
The test process starts with testing the OCS service in isolation. Two test sequences conreq_[A,B]; conreq_[A,C] are sufficient to detect all the output and transfer faults. If the output responses of the OCS implementation to the test sequences are equal to conreq_[A,B]; disreq_[OCS,A] then there are no output and transfer faults in the implementation.

Next, we must to check whether OCS service is still working in the context of other services. In this case, test cases can be derived from the composite FSM. As mentioned in [2], global transitions where the OCS is not involved are not tested. Therefore, the following two test cases are obtained: reset.offhook_A.Dial_A[B] and reset.offhook_A.Dial_A[C]. By direct inspection, one can verify that the above test suite checks less behavior of the embedded component OCS than that tested in isolation, since the test case reset.offhook_A.Dial_A[B] does not detect a faulty trace conreq_[A,C]/conreq_[A,B]. 

Therefore, if faults can occur only in the OCS implementation, the above test suite could be improved. For example, a test suite for testing OCS in the context of the BCS and CFU can be derived keeping in mind to detect nonconforming implementations of the OCS with up to two states, i.e. a test suite could traverse each transition of the composite FSM twice. Applying the method for test suite minimization from Section 4 a rather small test suite with four test cases is obtained:


The obtained test suite of total length 24 detects the same set of faulty OCS implementations as a much longer test suite that traverses each transition of the composite FSM twice.

The above example clearly shows a test suite for embedded testing can be effectively minimized using the proposed approach. 

7 Application areas

In this paper, the method is proposed for determining a regular set of all traces of the component FSM that can be detected by given an external test case. The obtained result has a number of applications. The approach can be used for test minimization for a system of communicating FSMs under a widely used assumption that at most one component FSM can be faulty. When considering a test case selection procedure for a system of communicating FSMs it is often required to derive a test suite that satisfies the test purpose to traverse each transition of each component FSM. When the set of detected faults within the implementation of a component FSM with a given test suite is known the fault coverage of the given test suite can be calculated [19]. However, in this case, the set of possible faults of the component’s implementation has to be limited with a proper fault domain. Using the proposed approach a set of test cases can be selected that not only satisfies the given test purposes but also has the better fault coverage w.r.t. component implementations [20, 21]. 

Moreover, the acceptors proposed in Section 4 can be useful for diagnosis of a faulty component FSM. When an implementation at hand produces a set of unexpected external output responses to a test suite the acceptors can be used in order to determine which implementation faults have caused the observed output responses. If the given test suite is insufficient to fix a fault within the implementation system the acceptors can be used as a guide for augmenting the test suite for fixing a number of faults.

8. Conclusion

Given a system of communicating FSMs and an external test case, this paper has proposed a method to derive a regular set of all traces of the component FSM that can be detected by the test case. The behaviour of the component can be non-deterministic. The obtained result has a number of applications. In this paper, the established relation between an external test case and the set of detectable faults within a component implementation is applied to test suite minimization for an embedded FSM. The reduced test detects the same set of faulty implementations of the embedded FSM as the initial test suite over the external reduction and equivalence relations. However, the complexity of the acceptor representing regular sets of traces exponentially depends on the length of a given external test case. Therefore, the approach is effective when test cases are rather short.

We are currently experimenting this approach on real services and protocols. In fact, the case study presented in this paper is a simplified version of a real service system.
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Input: Test suite TS, regular set D(() for each test case ((TS and regular set R((*() for each trace (*( of the reference composite FSM, ((TS


Output: Subset T of test suite TS that detects the same set of faulty implementations of the component FSM Ci as the initial test suite TS over the equivalence relation


Step 1. Enumerate test cases of the set TS . Let i:=1, T: =TS


Step 2. Consider the test case (i. If each sequence of the set D((i) is a prefix of some element of the union of D(() over all ((T\{(i} then go to Step 3. Otherwise, go to Step 4.


Step 3. If the set of output responses of the reference FSM to the (i has a single sequence then T: = T\{(i} and go to Step 4. Otherwise, consider the set of the reference external output responses to (i. If, for each reference output response ( to (i, there exists a reference trace (*(, ((T\{(i}, such that each trace of the set R((*() has a prefix in the set R((*() then T: = T\{(i} and go to Step 4. 


Step 4. If i > |TS| then END; otherwise increment i by 1 and go to Step 2.
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Figure 3. The acceptor F(x1x1).
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