
Chapter �

HIT�OR�JUMP� AN ALGORITHM FOR

EMBEDDED TESTING WITH

APPLICATIONS TO IN SERVICES

Ana Cavalli �� David Lee � Christian Rinderknecht �� Fatiha Za��di �

� Institut National des Telecommunications

� rue Charles Fourier

F������ Evry Cedex

�Ana�Cavalli� Christian�Rinderknecht� Fatiha�Zaidi��int�evry�fr
� Bell Laboratories� Lucent Technologies

��� Mountain Avenue

Murray Hill� NJ ������ USA

lee�research�bell�labs�com

Abstract This paper presents a new algorithm� Hit�or�Jump� for embedded testing
of components of communication systems that can be modeled by com�
municating extended �nite state machines� It constructs test sequences
e�ciently with a high fault coverage� It does not have state space ex�
plosion� as is often encountered in exhaustive search� and it quickly
covers the system components under test without being �trapped�� as
is experienced by random walks� Furthermore� it is a generalization
and uni�cation of both exhaustive search and random walks� both are
special cases of Hit�or�Jump� The algorithm has been implemented
and applied to embedded testing of telephone services in an Intelligent
Network 	IN
 architecture� including the Basic Call Service and �ve
supplementary services�

Keywords� conformance testing� embedded testing� communicating extended �nite
state machines� IN�

�� INTRODUCTION

With the advanced computer technology and the increasing demand
from the users for sophisticated services� communication protocol sys�

�



�

tems are becoming more complex yet less reliable� Conformance testing�
which ensures correct protocol implementations� has become indispens�
able for the development of reliable communication systems� Traditional
testing methods tend to test these systems as a whole or to test their
components in isolation� Testing these systems as a whole becomes dif�
�cult due to their formidable size� On the other hand� testing system
components in isolation may not be always feasible due to the interac�
tions among the system components� Embedded testing or testing in
context has become one of the main focuses of conformance testing re�
search in recent years� The goal of embedded testing is to test whether
an implementation of a system component conforms to its speci�cation
in the context of other components� It is generally assumed that the
tester does not have a direct access to the component under test� the
access is obtained through other components of the system� According
to the standard� �if control and observation are applied through one or
more implementations which are above the protocol to be tested� the
testing methods are called embedded� �	
�

Di�erent approaches for embedded testing have been proposed in the
published literature� They are based on fault models ��

� on reducing
the problem to testing of components in isolation ���
� on test suite
minimization ���� ��� ��� �
� on fault coverage ��	
� on the test of systems
with semicontrollable and uncontrollable interfaces �

� or on�the��y ��
�
Most of these approaches resort to reachability graphs to model the
joint behaviors of all the system components� and are exposed to the
well�known state space explosion�

Our goal is to test pre�speci�ed parts of a system component that is
embedded in a complex communication system� The pre�speci�ed parts
are determined by practical needs or by system certi�cation require�
ments� For instance� for a given system component� we may want to test
all the transitions or certain boundary values of system variables� We
can �rst construct a reachability graph� which is the Cartesian product
of all the system components involved� and then derive a test that covers
all the pre�speci�ed parts of the component under test� Unfortunately�
this exhaustive search technique is often impractical� it is impossible
to construct a reachability graph for practical systems due to the state
space explosion� To avoid this problem random walks have been pro�
posed� at any moment we only keep track of the current states of all
the components and determine the next step of test at random� This
approach indeed avoids the state space explosion but it may repeatedly
test covered parts and take a long time to move on to the untested parts�

We propose a new technique� Hit�or�Jump� It is a generalization
and uni�cation of both the exhaustive search technique and random



�

walks� yet it does not have the drawbacks of the two approaches� The
essence of our approach is as follows� At any moment we conduct a
local search from the current state in a neighborhood of the reachability
graph� If an untested part is found �a Hit�� we test that part and continue
the process from there� Otherwise� we move randomly to the frontier
of the neighborhood searched �Jump�� and continue the process from
there� This procedure avoids the construction of a complete system
reachability graph� As a matter of fact� the space required is determined
by the user � the local search� and it is independent of the systems under
consideration� On the other hand� a random walk may get �trapped� at
certain part of the component under test ���
� Our algorithm is designed
to �jump� out of the �trap� and pursue the exploration further�
The Hit�or�Jump algorithm has been applied to the embedded testing

of services on a telephone network� With the aid of ObjectGEODE tool�
this case study is on a real system that has been speci�ed using the SDL
language� It describes telephone services in an Intelligent Network �IN�
architecture� In addition to the Basic Call Services �BCSs�� �ve other
services are included� Originating Call Screening �OCS�� Terminating
Call Screening �TCS�� Call Forward Unconditional �CFU�� Call Forward
on Busy Line �CBL� and Automatic Call Back �ACB��
The paper is organized as follows� Section � introduces the basic

concepts and testability of embedded components� Section � describes
the test generation algorithm Hit�or�Jump for embedded components�
Section � discusses the implementations� Section 
 reports the experi�
mental results on IN� Section � concludes the paper with remarks on the
generalization and variations of the algorithm and on related issues�

�� BASICS

In this work we use extended �nite state machines to model system
components� the environment� the components under test and their im�
plementations� It is only for the convenience of presentation� our tech�
nique can be adapted to other mathematical models� such as Transition
Systems ���
� Petri Nets ���
 and Labeled Transition Systems ��
�

De�nition �� An extended �nite state machine �EFSM� is a quintuple
M � �I�O� S� �x� T � where I� O� S� �x� and T are �nite sets of input
symbols� output symbols� states� variables� and transitions� respectively�
Each transition t in the set T is a ��tuple�

t � �st� qt� at� ot� Pt� At�



�

where st� qt� at� and ot are the start �current� state� end �next� state�
input� and output� respectively� Pt��x� is a predicate on the current
variable values and At��x� de�nes an action on variable values�

Initially� the machine is in an initial state s��� � S with initial variable
values �x���� Suppose that the machine is at state st with the current
variable values �x� Upon input at� if �x is valid for Pt� i�e�� Pt��x� � TRUE�
then the machine follows the transition t� outputs ot� changes the current
variable values by action �x �� At��x�� and moves to state qt�

We model the environment and component under test by EFSM�s�
During an execution the states and variable values can be determined
as in the construction of reachability graphs for EFSM�s ��� ��
� From
now on we use the following notation � C is the environment EFSM�
A is the speci�cation EFSM under test� and B is the implementation
of A� Machine C and A�B� communicate synchronously� We represent
A in the context of C by the following notation � C � A� We want to
test the conformance of B to A in the context of C where C and A are
known and B is a �black�box�� It should be noted that C �A may not
be minimized or strongly connected even if C and A are� Also they can
be partially �incompletely� speci�ed�

In general� it is not always possible to test for isomorphism of embed�
ded components� even in the case of FSM�s� Assume that A and B are
FSM�s� Denote machine isomorphism by A �� B� Then we have�

Proposition �� B �� A implies C � B �� C � A� However� the
converse is not true in general�

The �rst part of the proposition is trivial� We show the second part
by an example�

Example ��

C:

a,b/x t/0

u/1

A:

x,y/t

B:

y/u

x/t

Figure �	�

In Figure ���� a and b are external inputs� � and � are external outputs�
and x� y� t� u are internal input�outputs� Obviously C�B �� C�A� But
B ��� A� Therefore� it is impossible to test A �� B in the context of C�



�

In practice� what we want is that B �behaves correctly� in the context
of C� That is� C � B �� C � A� Therefore� the problem is reduced to
testing if C�B �� C�A� However the real goal is to test the component
A� assuming that the environment machine C is correctly implemented�
Suppose that we test A in isolation� Then we may want to test all the
transitions of A� That is� we want to obtain a testing sequence such that
all the transitions of A are exercised� Similarly� in embedded testing we
want to obtain test sequences �with external inputs� such that all the
transitions of the component A are exercised� Speci�cally� we want to
derive tests for C � A such that all the transitions of A are tested� We
may want di�erent coverage of A than testing all the transitions� For
instance� we often want to test the boundary values of the variables� In
general� we want to obtain a test sequence for C � A� i�e�� for testing
the component A in the context of C� such that the component machine
A is covered according to a pre�speci�ed criterion� This criterion can
be speci�ed by assigning a distinct color to each entity �transition or
variable value� for instance� to be tested and by covering all the assigned
colors by test sequences generated� On the other hand� we do not worry
about the coverage of C� since it is assumed to be correctly implemented�
For clarity� we assume that the system under test does not have deadlock
nor livelock� which are well studied topics in validation ��
�

�� EMBEDDED TESTING

We �rst brie�y survey three commonly used and related methods
and then present our Hit�or�Jump algorithm� which is a generalization
and uni�cation of all these three methods� For clarity� we describe a
procedure that covers all the transitions of the component machine under
test� This is a commonly used criterion in practice� As indicated earlier�
other coverage criteria can be reduced to color covering of the component
under test� and our procedure can be easily adapted to generating tests
for the color covering� it is only a marking process� We shall further
elaborate on this issue when describing the algorithm�

��� A STRUCTURED ALGORITHM

From the initial state we want to generate a test sequence such that
all the transitions of component machine A are covered at least once�
The algorithm includes three steps� ��� Assign a distinct color to each
transition of A� ��� Construct a reachability graph of C �A where each
edge of C � A is marked with a color from A if it is derived from that
transition of A� ��� From the initial node of C�A� �nd a path of minimal
length such that all the colors are covered at least once� This approach



	

requires a construction of the reachability graph of C�A� which leads to
the well�known state explosion� Even if we could obtain such a graph the
problem is still NP�hard� Consequently� unstructured algorithms such
as random walks are considered� which do not require the construction
of reachability graphs�

��� RANDOM WALK

Starting from the initial node �s
���
C
� s

���
A
� �x���� where s

���
C
� s

���
A

and �x���

are the initial state of C and A and initial variable values� respectively�
Among all the possible outgoing edges in the reachability graph from the
initial node� we select one uniformly at random� and follow that edge
to the next node in the reachability graph� Suppose that after k steps

we arrive at a node �s
�k�
C
� s

�k�
A
� �x�k��� We examine all the outgoing edges

from this node and select one uniformly at random to follow� Meanwhile�
if there are colors associated with the chosen edges that have not been
marked �exercised�� we mark them o�� We repeat the process until all the
colors are marked o�� During the walk� we only keep track of� ��� The

current node �s
�k�
C
� s

�k�
A
� �x�k��� ��� The colors that have not been marked

o�� and ��� The edges that have been walked through with the associated
external I�O sequence� and that is the test sequence obtained from this
walk� Obviously� there is no need to construct a whole reachability graph
of C �A�

��� GUIDED RANDOM WALK

The procedure is the same as the random walk except for the follow�

ing� When we arrived at a node �s
�k�
C
� s

�k�
A
� �x�k�� among all the possible

outgoing edges� we classify them� ��� With transitions of A involved�
some of which are not marked� ��� With transitions of A involved and
all of them are marked� and ��� Without any transitions of A involved�
If the set ��� is not empty� we select one uniformly at random and follow
that edge� else if ��� is not empty� we select one uniformly at random
and follow that edge� and� �nally� if none of the above is true� ��� must
be non�empty� and we select one uniformly at random and follow that
edge� Guided random walks ���
 favor transitions of the embedded com�
ponent under test� and among them give �rst priority to the transitions
that have not been tested�

��� HIT�OR�JUMP ALGORITHM

The problems with random walks are� ��� To be �trapped� in a small
neighborhood� ��� With a low probability to cross a �narrow bridge�






to test the parts beyond the bridge� and ��� To miss the unmarked
transitions of A even if they are nearby �more than one step from the
current node�� The Hit�or�Jump algorithm is designed to avoid these
problems yet without the construction of a reachability graph� It does
not require a construction of a reachability graph of C � A either� and
performs better than pure random walks� Local search is used in the
procedure� and it can be Depth��rst or Breadth��rst search�

ALGORITHM HIT�OR�JUMP

initial condition� The environment machine C is in an initial state
s
���
C
� the component machine under test A is in an initial state s

���
A
� and

the system variables have initial values �x����

termination� The algorithm terminates when all the colors �transi�
tions� of A have been marked o��

execution�

�� HIT From the current node �s
�k�
C
� s

�k�
A
� �x�k�� conduct a search in

C �A until�

�a� Reach an edge which is associated with unmarked colors of
the component machine A� a Hit� Then �

i� Include the path from the current node to the edge �in�
clusive� in the test sequence under construction�

ii� Mark o� the newly exercised colors of A�

iii� Arrive at a node �s
�k���
C

� s
�k���
A

� �x�k�����

iv� Erase the searched graph�

v� Repeat from ��

or

�b� Reach a search depth or space limit without hitting any un�
marked colors of A� Then move to ��

�� JUMP

�a� We have constructed a search tree� rooted at �s
�k�
C
� s

�k�
A
� �x�k���

�b� Examine all the leaf nodes of the tree� and select one uni�
formly at random�

�c� Include the path from the root to the selected leaf node in
the test sequence�

�d� We arrive at the selected leaf node �s
�k���
C

� s
�k���
A

� �x�k����� a
Jump�

�e� Repeat from ��



�

Suppose that the local search depth is set to one� Then� obviously�
Hit�or�Jump becomes a RandomWalk� If we enforce priorities then it be�
comes a Guided Random Walk� On the other hand� if we do not set any
bound on the local search depth then we construct a reachability graph
in the worse case� Hit�or�Jump becomes a structured algorithm� There�
fore� Hit�or�Jump is a generalization of Random and Guided Random
Walks and also the structured algorithm� Furthermore� this technique
uni�es these three apparently quite di�erent approaches�

�� IMPLEMENTATIONS OF HIT�OR�JUMP

In this section we describe the implementation of Hit�or�Jump� It
was not possible to use the ObjectGEODE tool �Verilog� alone because
our algorithm needed special handling of features of the tool that are
not widely used �and hence poorly documented�� For our purpose� we
developed a software tool which drives the ObjectGEODE simulator�
Due to space limit we do not include the details here� and the interested
readers are referred to ��
�

Our goal is to get a test sequence in the fully deployed automaton�
corresponding to a path starting at the initial state� that contains all
the transitions of the embedded component under test yet without con�
structing the fully deployed automaton�

Interface� We supply our tool with the following informations� The re�
sult is a �le containing the test sequence for the embedded component�
The sequence is a series of pairs of inputs and outputs� ��� A disjunc�
tive stop condition modeling the set of the embedded system component
transitions� It de�nes the embedded system� ��� A positive integer de�
noting a depth limit that will be passed along to the simulator� we stop
when a search �DFS� BFS or B�DFS� reaches it� ��� The inputs that
the simulator can �re from the environment in order to stimulate the
whole system �here opposed to the embedded system�� ��� The protocol�
dependent variable for the simulator ��let� clauses� like number of users�
actions allowed� maximum number of actions per user� service subscrip�
tions etc��� �
� An initial scenario that starts all the processes and put
then in their initial state�

Con�guration� The �rst step of our tool is to con�gure and pro�
duce three start�up �les that will be used to drive the simulator� ���
main�startup� It loads the inputs that the simulator can �re from the en�
vironment� the protocol�dependent variables� the current scenario� and
speci�es the exhaustive and B�DFS mode� Then it runs the simulator�
��� stop search�startup� It is devoted to the identi�cation of the stop con�
dition in the disjunction that actually interrupted the simulation� ���



�

�nal�startup� It loads the inputs that the simulator can �re from the
environment and replays the �nal scenario we got after hitting all the
colors �transitions� of the embedded component� As a result we get an
ObjectGEODE log �le from which we extract the test sequence�

Simulation� We start the simulation with the main�startup �le� There
are two possible situations� ��� The simulator outputs a scenario� This
�le is output if and only if we Hit an uncovered transition of the em�
bedded system� Two cases can occur� �A� There was only one stop
conditions remaining� Then we have successfully completed the algo�
rithm� We run the simulator with the �nal�startup and extract from the
log �le the test sequence� �B� There were at least two stop conditions
remaining� Then we run again the simulator with the stop search�startup

�le in order to identify the stop condition that corresponds to the hit
transition among the current disjunction �i�e�� the set of uncovered tran�
sitions�� This start�up prints the stop condition statuses and identi�es
the one assessed to true� ��� The simulator does not output a scenario�
This means that the simulator stopped after reaching the depth limit� a
Jump is to be made� In other words� it did not �nd any transition that
satis�es one of the stop conditions in the disjunction� We nevertheless
got a �le� containing the partially deployed automaton� as a result of
the interrupted simulation� but we know neither the current state in the
EFSM �SDL speci�cation�� nor the path from the initial state� Thus we
parse the deployed automaton and conduct a DFS on it� We choose uni�
formly at random a leaf node and �nd a �shortest� path for the current
state to the selected leaf node� We append the path at the end of the
constructed scenario and resume the simulation�

�� CASE STUDY� IN TELEPHONE

SERVICES

In this section we report experimental results of applying the Hit�or�
Jump test generation technique to Intelligent Network �IN� telephone
services� The service integrates the supplementary services� Originate
Call Screening �OCS�� Terminal Call Screening �TCS�� Call Forward
Unconditional �CFU�� Call Forward on Busy Line �CBL� and Auto�
matic Call Back �ACB�� The system has been described using the SDL
language ���
 as far as call treatment� service invocation and user man�
agement are concerned ��
� It is located at the Global Functional Plane
�GFP�� taking some concepts of the Distributed Functional Plane �DFP��
It consists of di�erent functional entities that are represented by the Net�
work block� The Network block is composed by two blocks� the Basic
Service� which represents the Basic Call Service �BCS� and a Features



�


Block �FB� that represents the services� The BCS block contains three
processes� the Call Manager �deals with the management of a call�� the
Call Handler �which takes in charge the call itself� and the Feature Han�
dler �which allows to access to services�� The FB block is composed of
�ve processes that represent the services� Black List which is instanti�
ated twice in order to obtain a black list on calls start� the OCS service�
and a black list at calls arrival� the TCS� The other services are CFU�
CBL and ACB as mentioned above� This block includes also a process�
Feature Manager �which establishes a link between the Feature Handler
and the services�� The architecture of this speci�cation is depicted in
Figure ����

ACB

Network

System

Basic Call Service Features

CFB

Users

Users(5,5)

Feature
Handler

Call

Handler

Call

Manager

Feature
Manager

CFU

OCS(2,2)

Figure �	
 Global architecture

The model is described in such a way that it allows the execution of
di�erent calls in parallel and also calls initiated by the network�

The environment sends messages to the process Users� that are mod�
eled as SDL process instances that composed the Users Block� The user
process represents a combination of a phone line� a terminal and a user�
It is relatively complete with respect to the service�usage life�cycle� with
user�activations� deactivations� updates and invocations all modeled�



��

In order to provide a general idea of the complexity of the SDL system
speci�cations� we present in Figure ��� the global architecture of the
system and in Figure ��� some relevant metrics� The global system was
simulated using exhaustive simulation in a mood to obtain the complete
reachability graph� Figure ��� gives some information concerning the
numbers of states� transitions� etc� obtained after a manual stop of the
exhaustive search�simulation� It is impossible to construct the whole
reachability graph due to the formidable state space requirement�

Lines ���	�

Blocks �

Process 	

Procedures ��

States ��

Signals 
�

Macro de�nition ��

Timers �

Figure �	� Metrics of the ser�
vice speci�cation

�states �������

�transitions ���������

Max depth reached ��

Duration ��mn �	s

Transition coverage ������

States coverage ������

Figure �	� Partial simulation of the complete
speci�cation

We now report detailed results on test generation of OCS and CFU
services modules� It is a system component that is embedded in the
Features block and does not possesses any link with the environment�
For the embedded testing of this module� we want to traverse at least
once each of its branches� which is depicted in �gure ��
� Stop conditions
are used to represent the characteristics of each branch� To distinguish
each branch of the component� we hand�crafted the stop conditions�
Figure ��� illustrates the stop conditions of OCS module�
In order to perform the simulation of the system we con�gure a

startup� that initialize some variables and some services� the subscribers
that invocate the services and actions each subscribers can do � eg�
hangups� activations� disactivations� normal dialing�� For this case study�
and the results obtained� we have set these variables around �� actions
for each users�
The results are shown in Figure ���� The line �Number of transi�

tions� indicates the number of �red transitions at each simulation �i�e��
the size of the deployed automaton�� Hence it is aimed to be a mea�
sure of resource consumption� not of the size of the corresponding test



��

process BLACKLIST(2,2)

started_bl

ready_for_featops

invoke(feat, 
n1, n2, 

pid_user, dp)

added dp as a 
paramter 
(acb_12_d_140295
).

blacktable
(n1)(n2)

true

clear_call

-

false

continue

-

update(feat
, n1, 

pid_user)

ready TO 
pid_user

update

update

add_list_elmnt
(n2)

blacktable
(n1)(n2)

true

msg_info
(already_in_list
) TO pid_user

false

blacktable
(n1)(n2)
:=true

feature_op_ok 
TO 

pid_user

update

cut_connection

cut_connect_ack

ready_for_featops

Figure �	� Blacklist process

stop if output continue from blacklist ��

or output clear call from blacklist ��

or output ready from blacklist ��

or and
input add list elmnt to blacklist

output feature op ok from blacklist
��

or trans blacklist � from update input cut connection �


or and
input add list elmnt to blacklist

output msg info from blacklist
��

Figure �	� Stop conditions of the Blacklist process



��

subsequence� which is a path in the deployed automaton� Note that
in the worst case� when �nding the stop condition input add list elmnt

to blacklist and output msg info from blacklist �stop ���� the simulator
only passed through ��� transitions� It clearly shows that Hit�or�Jump
algorithm e�ectively �nds untested transitions without constructing the
reachability graph�
Furthermore� the total test sequence is short� Note that the time

corresponds to the CPU real user time �Sun Sparc Ultra����

Stops �� �� �� �� �
 ��

Number of transitions �� �
 	
 � � ���

Max depth reached �� 
� 
� � � 
�

Duration �seconds� ��
 ��� ��� ��� ���� ����

Figure �	� Simulation results for each stop condition

Once all the transitions of the embedded component OCS module have
been traversed� we obtain a single test sequence� which corresponds to
the total path that has been traversed from the environment to the last
transition of the module� The obtained sequence is of length �
�� we
only need to take �
� transitions to cover the whole OCS module in the
context�
We have exercised a Random Walk �see section ���� and got a test

sequence of ����� transitions� It is clear that Hit�or�Jump produces a
test sequence with a same fault coverage as a Random Walk but is an
order of magnitude shorter�
We have also performed experiments on the embedded testing of the

service CFU� Figure ��� illustrates the results obtained for OCS and
CFU services� Moreover we have also applied the Hit�or�Jump algorithm
to the process Responder of the INRES protocol ��
� The results for
the module Responder of the INRES protocol are relevant� in fact we
obtained a sequence of length �� in a BFS mode� We have also obtained
various test sequence lengths with hit�or�jump algorithm in di�erent
modes of search and a Random Walk �RW��



��

Modules OCS CFU

Modes DFS BFS B�DFS RW DFS BFS B�DFS RW

Depths �� �� �� � ��� ��� ��� �

�Stops � � � � � � � �

Sequences ��	 ��� ��
 �	�� deadlock ��
 ��� ���

�Jumps �� � � � � 
� � � �

Figure �	
 Results of the Modules OCS and CFU

	� CONCLUSION

We have presented a new algorithm Hit�or�Jump to perform testing
of components that are embedded in a complex communication system�
It is a generalization and uni�cation of Random and Guided Random
Walks and also the structured algorithm� Yet it does not have the state
space explosion problem as is encountered by the structured algorithms�
and it generates high coverage test sequences that are much shorter than
that from random walks�

Hit�or�Jump is a new technique for system state search� We have
applied it for embedded testing� It can also be used for veri�cation and
validation� which depend on system state search� and our method could
help dealing with the state explosion problem there�

For clarity we have presented a straightforward version of Hit�or�Jump
algorithm� It has a number of variations and generalizations� and their
implementations are simple modi�cations of the version presented� We
brie�y describe a few here� For a Jump we select uniformly at random
a leaf node of the locally searched graph �tree� and proceed from there�
Instead� we can enforce certain priorities in selecting the leaf nodes as
in a Guided Random Walk ���
� and then conduct a �Guided Jump�
according to the leaf node priorities as in a Guided Random Walk� An�
other variation is� if there has been no Hit for a large number of Jumps�
one might �backtrack� to the previous Hit� and Jump to a di�erent
node to proceed with testing� The idea behind is� get back when one
has gone �astray�� Even though in our experiments with IN we have not
encountered such problem� it might not be a surprise for testing compo�
nents that are embedded in a complex system� Also when constructing
a search tree on�line� we can compress internal transitions of C�A ���

to further save space�



��

We have been focused on covering all the transitions of A� The algo�
rithm can be easily extended to� �A� Covering some �not necessarily all�
transitions of A� which are speci�ed by users or the testers� �B� Cover�
ing some states of A� and �C� Covering some transitions and states of
A along with speci�ed variable values such as boundary values� We can
assign a distinct color to each entity to be covered� and run Hit�or�Jump
until all the colors are covered� Several approaches ���
� ��

 use fault
models� We have a general procedure� independent of any fault models�
However� we can assign colors to the entities of the component machine
under test for the coverage from fault models� and our procedure can be
used for test generation associated with fault models�
We have not speci�ed the depth of local search for a Jump in case

there is no Hit� For IN we tested on a few depth values� i�e�� 
� and ����
Intuitively� a larger depth value increases the probability of hitting an
uncovered part of the component under test� However� it requires more
space and time for each step� Furthermore� a long �Jump� implies a
longer subsequence in the test for this step� We believe that it depends
on the system under test to choose a good depth value� As indicated
earlier� one can always choose a depth value that is within the limit of
a�ordable memory space� As local search for a Hit�or�Jump� we have
tested both Breadth��rst�search and Depth��rst�search� Breadth��rst�
search seems to perform better� it is �unbiased� and makes an �equi�
distance� random Jump�

References

��
 C� Bourh�r� R� Dssouli� E� Aboulhamid� and N� Rico� A guided
incremental test case generation procedure for conformance test�
ing for CEFSM speci�ed protocols� In IWTCS���� Tomsk� Russia�
August �		��

��
 E� Brinksma� A theory for the derivation of tests� In Proc� IFIP
WG��� �th Int� Symp� on Protocol Speci�cation� Testing and Veri	
�cation� North�Holland� �	���

��
 A� Cavalli� D� Lee� C� Rinderknecht� and Fatiha Zaidi� Hit�or�jump�
An algorithm for embedded testing with applications to in services�
In Tech� Memo� Bell Laboratories� May �			�

��
 P� Combes and B� Renard� Service validation� tutorial� In SDL
Forum��
� France� �		��

�

 M� A� Fecko� U� Uyar� A� S� Sethi� and P� Amer� Issues in confor�
mance testing� Multiple semicontrollable interfaces� In Proceedings
of FORTE�PSTV���� Paris� France� November �		��



�	

��
 J��C� Fernandez� C� Jard� T� Jeron� and C� Viho� Using on�the��y
veri�cation techniques for the generation of test suites� In CAV�
LINCS ���
� USA� July �		��

��
 D� Hogrefe� Osi formal speci�cation case study� the inres proto�
col and service� revised� Technical report� Institut f�ur Informatik
Universit�at Bern� may �		��

��
 G� J� Holzmann� Design and Validation of Computer Protocols�
Prentice Hall� New Jersey� �		��

�	
 ISO� Information Technology� Open Systems Interconnection� Con	
formance Testing Methodology and Framework� International Stan	
dard IS	����� �		��

���
 ITU� Recommendation Z���� � CCITT Speci�cation and Descrip	
tion Language �SDL�� �		��

���
 D� Lee� K� Sabnani� D� Kristol� and S� Paul� Conformance testing
of protocols speci�ed as communicating �nite state machines � a
guided random walk based approach� In IEEE Transactions on
Communications� volume ��� No�
� May �		��

���
 D� Lee and M� Yannakakis� Principles and methods of testing �nite
state machines � a survey� Proc� of the IEEE� ��������	�������
August �		��

���
 L� P� Lima and A� Cavalli� A pragmatic approach to generating
test sequences for embedded systems� In Proceedings of IWTCS��
�
Cheju Island� Korea� September �		��

���
 R� Milner� Communication and Concurrency� Prentice�Hall� Engle�
wood Cli�s� New Jersey� �	�	�

��

 A� Petrenko� N� Yevtushenko� and G� V� Bochmann� Fault models
for testing in context� In Proceeding of FORTE�PSTV���� Kaiser�
sl�autern� Germany� October �		��

���
 A� Petrenko� N� Yevtushenko� and G� V� Bochmann� Testing faults
in embedded components� In Proceedings of IWTCS��
� Cheju Is�
land� Korea� September �		��

���
 A� A� Petri� Kommunikation mit Automaten� Ph� D� thesis� Uni�
versitat Bonn� �	���

���
 N� Yevtushenko� A� Cavalli� and L� P� Lima� Test suite minimization
for testing in context� In IWTCS���� Tomsk� Russia� August �		��

��	
 J� Zhu and S� T� Vuong� Evaluation of test coverage for embedded
system testing� In IWTCS���� Tomsk� Russia� August �		��


