
EXPERIMENTAL EVALUATION OF FSM-BASED TESTING METHODS

1Rita Dorofeeva 2Khaled El-Fakih 3Stephane Maag 3Ana R.Cavalli 1Nina Yevtushenko
1Tomsk State University, Russia, 2American University of Sharjah, UAE, 3Institut National des

Télécommunications, France
drf@kitidis.tsu.ru, yevtushenko@elefot.tsu.ru,

kelfakih@aus.ac.ae{Ana.Cavalli,Stephane.Maag}@int-evry.fr

Abstract

The development of test cases is an important

issue for testing software, communication protocols
and other reactive systems. A number of methods are
known for the development of a test suite based on a
formal specification given in the form of a finite state
machine. Well-known methods are called the W, Wp,
UIO, UIOv, DS, H and HIS test derivation methods.
These methods have been extensively used by
research community in the last years; however no
proper comparison has been made between them. In
this paper, we experiment with these methods to
assess their complexity, applicability, completeness,
fault detection capability, length and derivation time
of their test suites. The experiments are conducted on
randomly generated specifications and on a realistic
protocol called the Simple Connection Protocol.

1. Introduction

The development of test cases based on a formal
model is an important issue for software testing
including conformance testing of communication
protocols and other reactive systems. A number of
methods are known for the development of a test suite
based on a specification given in the form of a finite
state machine. Well known methods are called the W,
Wp, UIO, UIOv, DS, H and HIS test derivation
methods [4, 6, 15, 19, 22, 21, 17]. For related surveys
the reader may refer to [18, 1, 20, 13]. In particular,
in the last years an increasing research has been
developed on the application of these methods to
object oriented software [2].

In FSM-based testing, one usually assumes that not
only the specification, but also an implementation can
be modeled as a deterministic FSM. If the behavior of
an implementation FSM is different than the specified
behavior, the implementation contains a fault. Two
types of implementation faults are usually considered,

namely output and transfer faults. An implementation
has an output fault if the output of one of its
transitions is different from that of the specification
and an implementation has a transfer fault if the next
state of a transition is different from that of the
specification. Moreover, an implementation has
multiple faults if it has many output or transfer faults
[1, 4, 6, 15, 18, 22, 21].

The above methods, except the UIO method, each
provides the following fault coverage guarantee: If
the specification can be modeled by an FSM with n
states and if an implementation can be modeled by an
FSM with at most m states, where m is larger or equal
to n, then a test suite can be derived by the method
(for this given m) and the implementation passes this
test suite if and only if it conforms (i.e. is equivalent)
to the specification (that is, the implementation does
not contain output and transfer faults). Moreover, all
of the above methods assume that a reliable reset is
available for each implementation under test (written
as ‘r’). This implies that the test suite can be
composed of several individual test cases, each
starting with the reset operation.

All of the above methods use certain state
distinguishing input sequences (called state
identifiers) in test derivation, and thus, can be only
applied when all states of the specification FSM are
pairwise distinguishable. Moreover, the length of a
derived test suite essentially depends how state
identifiers are selected. The DS method can be
thought of as a particular case of the W method.
However, the DS method is not always applicable
even for complete reduced specifications [7]. The Wp
method is an improvement to the W method and thus
is expected to generate shorter test suites. Also, the
UIOv method can be thought of as a particular case of
the Wp and is expected to generate shorter test suites.
The UIO method employs part of the UIOv method
and thus generates shorter test suites. However, UIO
test suites are not always complete [22]. In the so-
called H method [12, 5], unlike all other methods, for

 1

every state of the specification FSM, appropriate state
identifiers are selected on the fly (i.e. not in advance)
in order to shorten the length of the resulting test
suite. The H method generates a complete test suite
and is always applicable for any complete reduced
specification.

The methods have been studied and applied by
research community in the last years. However, no
comparison has been provided on the applicability,
completeness and efficiency of these methods. In this
paper we implement and experiment with the above
methods (for the case when the number of states of an
implementation is not more than that of the
specification) in order to: (i) determine and compare
the length and derivation time of their test suites, (ii)
determine how often the UIO and DS methods are not
applicable and how often the UIO method (when
applicable) generates incomplete test suites, (iii)
determine the fault detection capability of the UIO-
based incomplete test suites, and (iv) compare length
of obtained test suites with that obtained using the
corresponding theoretic worst-case upper-bound. The
experiments are conducted on randomly generated
specifications and on a realistic protocol called the
Simple Connection Protocol (SCP) [3].

This paper is organized as follows. Section 2
defines notations for describing finite state machines
and Section 3 includes an overview of the W, Wp,
HIS, H, UIOv, UIO, and DS test derivation methods.
Sections 4 and 5 include the experimental results and
Section 6 concludes the paper.

2. Finite State Machines

This section contains the definition of basic
concepts that are used in the rest of the paper.

Definition 2.1 A deterministic finite state machine
is an initialized complete deterministic Mealy
machine that can formally be defined as a 6-tuple M =
(S,X,Y,δM,λM,s1) [7], where S is a finite set of states,
s1 is the initial state, X is a finite set of input symbols,
Y is a finite set of output symbols, δM is a next state
(or transition) function:δM: S×X →S, λM is an output
function: λM: S×X →Y. In usual way, functions δM
and λM are extended to input sequences.

Definition 2.2 A FSM A is called connected if for
each state s∈S there exists an input sequence αs that
takes FSM A from the initial state to state s. The
sequence αs is called a transfer sequence for the state
s.

Definition 2.3 A set Q of input sequences is called
a state cover set of FSM M if for each state si of S,

there is an input sequence αi∈Q that takes FSM from
the initial state to state si. If FSM is connected, i.e. if
each state is reachable from the initial state, then a
state cover set always exists. We further assume that
the specification FSM M is a connected FSM1 and
consider only prefix-closed state cover sets, i.e. a
state cover set contains all prefixes of each sequence.

Definition 2.4 Let M = (S, X, Y, δM, λM, s1) and I
= (T, X, Y, δI, λI, t1) be two FSMs. In the following
sections M usually represents a specification while I
denoting an implementation. We say that two states sj
of M and ti of I are equivalent [7], written sj ≅ ti, if

for each input sequence α ∈ X* it holds that λM(sj,
α) = λI(ti, α). Otherwise, we say that states si and tj
are distinguishable, written sj ≇ ti.

Definition 2.5 An input sequence α ∈ X* such that

λM(sj, α) ≠ ΛI(ti, α) is said to distinguish the states sj
and ti. FSMs M and I are equivalent, written M ≅ I,
(distinguishable, written M ≇ I) if their initial state
are equivalent (distinguishable).

Definition 2.6 An FSM is said to be reduced if its

states are pair-wise distinguishable.

Definition 2.7 We say that I conforms to M if and

only if FSMs I and M are equivalent. In other words,
for each input sequence the output responses of M
and I coincide [7, 17, 18].

Definition 2.8 Given a specification FSM M, the

fault domain J(X) of M is the set of all possible
implementations of M defined over the input alphabet
X of M. Similar to [16] we let Jm(X) denote the set of
all complete FSMs defined over the input alphabet X
with up to m states. A test suite TS is a finite set of
finite input sequences of the specification FSM M.

Definition 2.9 A test suite TS is m-complete if for

each implementation I ∈ Jm(X) that is distinguishable
from M, there exists a sequence in TS that
distinguishes M and I.

1 We consider only connected FSMs without loss of
generality, since any state of an FSM that is
unreachable from the initial state, does not influence
the behavior of the FSM.

 2

3. Overview of Test Derivation Methods

This section includes an overview of test derivation

methods. All these methods, except the UIO, have
two phases. Tests derived for the first phase check
that each state presented in the specification also
exists in the implementation, while tests derived for
the second phase check all (remaining) transitions of
the implementation for correct output and ending
state as defined by the specification. For identifying
the state during the first phase and for checking the
ending states of the transitions in the second phase,
certain state distinguishing input sequences are used.

The only difference between the above methods is
how such distinguishing sequences are selected. In
the original W method, a so-called characterization
set W (or simply W set) is used to distinguish the
different states of the specification. The Wp method
uses the W set during the state identification phase
(the first phase) while only an appropriate subset,
namely a corresponding state identifier, is used when
checking the ending state of a transition. In the HIS
method a family of state identifiers is used for state
identification as well as for transition checking. In the
UIOv method, which is a proper sub-case of the Wp
method, the state identifier of each state has a single
Unique Input Output (UIO) sequence. Such an UIO
allows to distinguish the expected ending state of a
transition from all other states of the specification. A
test suite is shortened; however, an UIO sequence
may not exist for some states of a given specification
FSM.

In subsection 3.2 we briefly describe the test
derivation methods [4, 6, 15, 22, 12]. Meanwhile, we
describe the state identification utilities used by these
methods.

3.1. State identification facilities

In order to check that each state and each transition
defined in the specification also exists in the
implementation, the methods use certain input/output
behaviors that can distinguish the states of an FSM.
Consider a reduced specification FSM M =
(S,X,Y,δM,λM,s1).

A characterization set of the FSM M, often simply
called a W set, is a set of input sequences defined
over the input alphabet of M that satisfies the
condition: For any two states si and sj, i ≠ j, ∃ β ∈ W
such that λM(si, β) ≠ λM(sj, β). That is for any two
states of M, the W set includes a sequence that
distinguishes these states. A W set always exists for a
reduced FSM.

Given state sj ∈ S of FSM M, a set Wj of input
sequences is called a state identifier (or a separating
set) of state sj if for any other state si there exists α ∈
Wj such that λM(sj, α) ≠ λM(si,α). A separating
family [20] (or a family of harmonized identifiers [14,
15]) is a collection of state identifiers Wj, sj∈S, which
satisfy the condition: For any two states sj and si, j ≠
i, there exist β ∈ Wj and γ ∈ Wi which have common
prefix α such that λM(sj, α) ≠ λM(si, α). A
separating family always exists for a reduced FSM.

Given a state si of the specification FSM M, let αi
be an input sequence such that for any state sj, i ≠ j,
λM(si, αi) ≠ λM(sj, αi). Then αi/βi where βi = λM(si,
αi), is said to be a Simple Input/Output Sequence [9]
or a Unique Input/Output (UIO) sequence [17], for
state si. Let each state of the specification FSM have
an UIO αi/βi and {α1, α2, ... αn} be the set of input
parts of all these UIOs. Then the set {α1, α2, ... αn}
is known to be a W set. We note that a UIO sequence
may not exist for some states of a reduced FSM.

Let α be an input sequence such that for any two
states si and sj , i ≠ j, of the specification FSM M it
holds that λM(si, α) ≠ λM(sj, α). Then α is said to be
a distinguishing sequence or diagnostic sequence
(DS) [7, 8, 11] for the specification machine M. The
set {α} is a W set.

For a distinguishing sequence α, let βi = λM(si, α),
i = 1, 2, ..., n. Then α/β1, α/β2, ... α/βn are UIO
sequences for the n states s1, s2, ..., sn, respectively.
A distinguishing sequence may not exist for some
reduced FSMs [7].

As an application example, consider the
specification FSM M shown in Fig. 1 with inputs X =
{x, y} and outputs Y = {0, 1}.

s1

s3

s2

s4

y/0

x/0x/1
y/0

x/1

x/1

y/0

y/1

Figure 1. Specification FSM M

The specification M admits the set of sequences {x,

y, yy} as a W set. From the above, we get the
following state identifiers, W1 = {yy}, W2 = {y}, W3

= {x}, and W4 = {x, yy}. In order to obtain a
separating family from these identifiers, we

 3

harmonize W2 and W3 by adding the input x into W1
and W2 and y into W3, and obtain as a separating
family the set F = {H1, H2, H3, H4}, where H1 = {x,
yy}, H2 = {x, y}, H3 = {x}, and H4 = {x, yy}.

The FSM M has the sequence yyy as a
distinguishing sequence. For states s1, s2, s3, and s4
of M, we have, in response to yyy, the output
sequences 010, 100, 001, and 000, respectively.

3.2 Test Derivation Methods

Given a reduced complete specification FSM M =
(S, X, Y, δM, λM, s1), |S|=n, let W be a
characterization set of M and F = {W1,…, Wn} be a
separating family of M.

The test derivation methods have two phases in
order to test the equivalence of I and M.

Given a reduced complete specification FSM M =
(S, X, Y, δM, λM, s1), |S|=n, let W be a
characterization set of M and F = {W1,…, Wn} be a
separating family of M.

The test derivation methods have two phases in
order to test the equivalence of I and M.

State identification phase:
This phase checks that each state specified by M

also exists in I using a characterization set W (W, Wp,
UIOv and DS methods), or a separating family F
(HIS method). We note that for the UIOv method, the
W set consists of the input parts of the UIOs of M and
for the DS method the W set consists of a single
sequence, namely a DS of M.

Given a prefix-closed state cover set Q = {α1,
α2,…, αn} of the specification FSM, for each state sj

∈ S, the state identification phase comprises the
sequences:

 r.αj.Hj (in the HIS method) or
r.αj.W (in the W, Wp, DS, and UIOv methods).
Each test sequence starts from the initial state, after

the application of the reset input r. In this case, in the
W, Wp, DS and UIOv methods, to identify the ending
state sj after applying an input sequence αj, all the
sequences contained in W are applied to I, separately.
However, in the HIS it is enough to apply the
sequences of the state identifier set Hj of sj.

Transition testing phase:
This phase assures that for each transition of M

there exists a corresponding transition in I. For this
purpose, for each sequence αj ∈ Q that takes the
specification FSM to appropriate state sj, and each

x∈X that takes the M from state sj to state sk, the
transition testing phase includes the following set of
test sequences:

r.αj.x.Hk in the HIS method,
r.αj.x.Wk in the UIOv and Wp methods, where Wk

⊆W is a state identifier or a corresponding UIO of the
state sk or

r.αj.x.W in the W method.
If FSM I = (T, X, Y, ∆I, ΛI, t1) has at most n states

and passes the test sequences of both testing phases,
then I is equivalent to the specification FSM, i.e. I is a
conforming implementation.

The UIO method [17] is based on UIO sequences
and it employs only the second testing phase. It was
originally claimed [17] that a test suite derived using
the UIO method is complete w.r.t. all
implementations with up to n states. However, a
counter-example was later given in [22] that proves
that the UIO method does not guarantee complete
fault coverage.

The H method [12, 5] can be regarded as an
improvement to the HIS method. The main idea of the
H method is not to use a priori derived state
identifiers. State identifiers are constructed, based on
already derived test cases, in order to distinguish the
ending states of transitions. Thus, different state
identifiers can be used when testing transitions with
the same ending state.

Example: As an application example of the above
methods, consider the FSM M of Figure 1. We recall
that M admits as a characterization set the set W = {x,
y, yy}, as state identifiers the sets W1= {yy}, W2 =
{y}, W3 = {x}, and W4 = {x, yy}, and the set F= { H1,
H2, H3, H4} as a separating family of harmonized
state identifiers, where H1 = {x, yy}, H2 = {x, y}, H3

= {x}, and H4 = {x, yy}. Moreover, M has the state
cover set Q = {α1, α2, α3, α4}, where α1= ε, α2= y,
α3=x, and α4= yy.

W method application:
Based on the above sets, in the W method, the state

identification phase yields the test sequences TSW:
r.{α1, α2 , α3, α4}.W and the transition testing phase
yields the test sequences: r.{α1, α2, α3, α4}{x,y}W.
We replace the α’s and W’s in the above sequences
by their corresponding values and then remove from
the obtained set those sequences that are proper
prefixes of other sequences and obtain TSW = {rxxx,
rxxyy, rxyx, rxyyy, ryxx, ryxyy, ryyxx, ryyxyy, ryyyx,
ryyyyy} of total length 49.

 4

Wp method application:
In the Wp method, in addition to the state

identification sequences, the transition testing phase
yields the sequences TSWp: r.α1.x.W3 + r.α1.y.W2 +
r.α2.x.W2 + r.α2.y.W4 + r.α3. x.W2 + r.α3.y.W1 +
r.α4.x.W3 + r.α4.y.W4. We replace the α’s and W’s
by their corresponding values and obtain TSWp =
{rxxy, rxyyy, ryxy, ryyxx, ryyyx, ryyyyy} of total
length 29. Similarly, we apply the HIS method and
obtain the test suite TSHIS = {rxxx, rxxy, rxyx, rxyyy,
ryxx, ryxy, ryyxx, ryyyx, ryyyyy} of total length 41.
We note here that for this example, the first parts for
the state identification phases in Wp and HIS
methods coincide and for this reason the Wp returns a
shorter test suite knowing that we do not need to
harmonize, as in the HIS, the state identifiers.

H method application:
In the H method, in the state identification phase,

we obtain the sequences {rxx, ryx, ryyx, ryyyy} using
the same state identifiers W1= {yy}, W2 = {y}, W3 =
{x}, and W4 = {x, yy}. In the transition testing phase,
consider the transition from state s3 under input x
with the final state s2. In order to test this transition,
we apply the input sequence r.α3.x.y = r.x.x.y instead
of applying the sequences r.α3.x.H2 = r.x.x.{x, y} as
in the HIS method. This is done since the input y is
already applied, in the state identification phase, at
each state of the implementation (if the
implementation passes the sequences of the state
identification phase) and thus we can use y in the
transition testing phase instead of using as in the HIS
method the harmonized state identifier H2 = {x, y}.
Similarly, we derive identifiers to check all other
transitions. The obtained test suite TSH = {rxxy,
rxyyy, ryxy, ryyxx, ryyyyyy} is of total length 25.

DS method application:
When constructing a characterization set we derive

a shortest distinguishing sequence for each pair of
different states of the specification FSM. However,
sometimes such sequences do not yield the shortest
test suite. By direct inspection, one can assure that the
FSM M of our working example has a distinguishing
sequence yyy. Thus, we can select as harmonized state
identifiers the sets Z1 = {yy}, Z2 = {y}, Z3 = {yyy},
and Z4 = {yyy}. In this case, the HIS method returns a

test suite TSDS = {rxxy, rxyyy, ryxy, ryyxyyy, ryyyyyy}
with total length 27.

4. Experimental Results

In this section we experiment with the above
described methods with the following objectives: (i)
determine and compare the length and derivation time
of their test suites, (ii) determine how often the UIO
and DS methods are not applicable and how often the
UIO method (when applicable) generates incomplete
test suites, (iii) determine the fault detection
capability of some UIO-based incomplete test suites,
and (iv) compare length of the obtained test suites
with the theoretical upper-bound.

For every pair of (different) states of M, we
generate a shortest input sequence that distinguishes
this pair [7, 19]. The set of all obtained distinguishing
sequences is a W set of the specification FSM M. The
subset of all obtained sequences that distinguish a
state si from all other states of M is a state identifier
(Wi) of si. The set of all state identifiers is a
separating family (F) of M. An algorithm for deriving
a distinguishing sequence (if exists) for a given FSM
is given in [11]. We derive UIO sequences using the
distinguishing tree algorithm given in [7].

Table 1 provides a comparison between the length
of test suites obtained by these methods and their
derivation time in seconds. The comparison is based
on randomly generated completely specified reduced
specifications with a varying number of
inputs/outputs and states (n).

Each row of Table 1 corresponds to a group of 50
randomly generated completely specified reduced
specifications. For each of these specifications we use
the W, Wp, HIS, UIOv and H methods to derive
corresponding test suites. Moreover, we also derive
test suites using the UIO and DS methods when the
specifications have UIO and DS sequences. Then, we
calculate the average length and derivation time (in
seconds) of test suites generated for each group using
each of these methods as shown in Columns VI to
XII, respectively. We also calculate for each group
how many times (out of 50) the UIO and DS methods
were applicable and the average length for their test
suites as shown in Columns XIII and XIV,
respectively.

 5

Table 1: A Summary of Conducted Experiments

 I
- G

ro
up

s
of

 5
0

Ex
pe

rim
en

ts

 I
I-

N
um

be
r o

f S
ta

te
, n

 I
II-

 N
um

be
r o

f I
np

ut
s,

 k

 I
V-

 N
um

be
r o

f O
ut

pu
ts

 V
- N

o.
 o

f T
ra

ns
iti

on
s

(n
xk

)

 V
I-

A
ve

ra
ge

 L
en

gt
h

of
 W

 T
es

t S
ui

te
s

 (
av

er
ag

e
tim

e
of

 te
st

 d
er

iv
at

io
n)

 V
II-

 A
ve

ra
ge

 L
en

gt
h

of
 W

p
Te

st
 S

ui
te

s
 (

av
er

ag
e

tim
e

of
 te

st
 d

er
iv

at
io

n)

 V
III

- A
ve

ra
ge

 L
en

gt
h

of
 H

IS
 T

es
t S

ui
te

s
 (

av
er

ag
e

tim
e

of
 te

st
 d

er
iv

at
io

n)

 I
X-

 A
ve

ra
ge

 L
en

gt
h

of
 U

IO
v

Te
st

 S
ui

te
s

 (
av

er
ag

e
tim

e
of

 te
st

 d
er

iv
at

io
n)

 X
- A

ve
ra

ge
 L

en
gt

h
of

 H
 T

es
t S

ui
te

s
 (

av
er

ag
e

tim
e

of
 te

st
 d

er
iv

at
io

n)

 X
I A

ve
ra

ge
 L

en
gt

h
of

 U
IO

 T
es

t S
ui

te
s

 (
av

er
ag

e
tim

e
of

 te
st

 d
er

iv
at

io
n)

 X
II-

 A
ve

ra
ge

 L
en

gt
h

of
 D

S
Te

st
 S

ui
te

s
 (

av
er

ag
e

tim
e

of
 te

st
 d

er
iv

at
io

n)

 X
III

- N
o.

 o
f T

im
es

 (o
ut

 o
f 5

0)
 U

IO
 is

 A
pp

lic
ab

le

 X
IV

- N
o.

 o
f t

im
es

 (o
ut

 o
f 5

0)
 D

S
is

 A
pp

lic
ab

le

1 30 6 6 180
2545
(0.82)

1626
(0.06)

1649
(0.26)

1406
(0.78)

1105
(0.12)

783
(0.58)

934
(0.83) 50 19

2 30 8 8 240
2985
(1.09)

1919
(1.10)

1946
(0.40)

1406
(0.92)

1320
(0.16)

1012
(0.76)

1281
(1.00) 50 34

3 30 10 10 300
3393
(1.48)

2175
(2.06)

2243
(0.59)

1477
(1.54)

1568
0.24()

1196
(1.48)

1493
(1.83) 50 47

4 50 4 4 200
4213
(1.15)

2637
(1.68)

2635
(0.53)

4077
(2.12)

1711
(0.21)

996
(1.29) 0 46 0

5 50 6 6 300
5203
(2.98)

3261
(3.04)

3261
(0.97)

3447
(3.06)

2142
(0.30)

1383
(2.04)

1777
(3.00) 50 6

6 50 8 8 400
6049
(4.49)

3828
(3.22)

3828
(1.59)

3167
(2.54)

2534
(0.47)

1820
(2.02)

2177
(7.67) 50 9

7 50 10 10 500
6773
(5.77)

4305
(5.54)

4375
(2.37)

3126
(4.38)

2852
(0.69)

2233
(3.58)

2710
(8.00) 50 30

8 60 6 6 360
6891
(6.26)

4138
(4.90)

4138
(1.58)

4933
(5.32)

2697
(0.48)

1,690
(3.34)

2250
(19.0) 50 1

9 60 8 8 480
7814
(6.79)

4844
(5.14)

4844
(2.67)

4250
(4.30)

3185
(0.71)

2229
(3.34)

2660
(48.0) 50 12

10 60 10 10 600
8978

(10.37)
5443
(8.48)

5490
(3.91)

4178
(6.20)

3656
(1.16)

2758
(5.16)

3269
(9.50) 50 15

11 70 6 6 420
8245
(6.76)

5047
(7.40)

5047
(2.27)

6795
(9.18)

3274
(0.68)

2010
(5.20)

2650
(11.0) 50 1

12 70 8 8 560
9271
(9.71)

5899
(7.80)

5899
(3.30)

5539
(6.72)

3898
(1.01)

2639
(4.86)

3625
(22.0) 50 2

13 70 10 10 700
11012
(14.65)

6673
(13.6)

6694
(4.83)

5280
(10.2)

4344
(1.42)

3262
(8.16)

3892
(55.5) 50 13

14 80 6 6 480
9890

(10.25)
6082
(12.5)

6078
(3.04)

9296
(17.0)

3882
(0.87)

2328
(8.72) - 49 0

15 80 8 8 640
11243
(15.58)

6980
(11.5)

6980
(4.64)

7132
(10.6)

4588
(1.48)

3055
(7.18)

4200
(47.0) 50 1

16 80 10 10 800
13144
(20.93)

7892
(17.7)

7892
(6.79)

6624
(13.8)

5216
(2.15)

3771
(10.4)

4466
(35.5) 50 3

17 90 6 6 540
11522
(14.09)

7005
(18.4)

7045
(4.19)

12004
(27.7)

4426
(1.18)

2659
(13.8) - 50 0

18 90 8 8 720
13254
(20.36)

8138
(15.5)

8159
(6.30)

8624
(15.2)

5285
(2.02)

3466
(9.58)

4716
(39.0) 50 3

19 90 10 10 900
15129
(28.59)

9194
(25.1)

9194
(9.13)

7911
(20.0)

6078
(2.78)

4293
(14.8)

5935
(76.0) 50 8

20 100 6 6 600
13261
(18.35)

8031
(23.9)

8031
(5.52)

14576
(37.1)

4976
(1.57)

3012
(17.6) - 50 0

21 100 8 8 800
15091
(26.61)

9332
(22.1)

9332
(8.43)

10486
(23.1)

6020
(2.57)

3892
(14.3) - 50 0

22 100 10 10 1,000
17204
(41.99)

10503
(33.7)

10503
(11.79)

9248
(27.7)

6880
(3.75)

4810
(20.0)

6602
(36.0) 50 7

 6

500

2500

4500

6500

8500

10500

12500

14500

A
ve

ra
ge

 L
en

gt
h

of
 T

es
t S

ui
te

s
W
Wp
HIS
UIOv
H
UIO
DS

Figure 2. Average length of the W, Wp, HIS, UIOv, H, UIO and DS Test Suites.

Figure 2 depicts the average length of test suites

and sorted according to Column V (number of
transitions), derived using the testing methods. The
UIO method generates shorter test suites than all
other methods. However, on average, most of the
UIO test suites are incomplete (more analysis on the
completeness of the UIO test suites is given below).
The DS and H methods generate test suites of
comparable length. However, unlike the H method,
the DS method is not always applicable and the
experiments show that it becomes less applicable as
the ratio of the number of outputs to the number of
transitions decreases (more detailed analysis is given
below). The HIS and Wp test suites are of
comparable length. The reason for that could be that
state identifiers used by Wp method do not need to be
harmonized and thus, are shorter than those used by
HIS method. The HIS/Wp methods generate shorter
suites than those of the W method, as expected. The
UIOv did not perform better than the HIS and Wp
method; that also is expected as UIOv is a particular
case of the Wp-method. Moreover, differently from
Wp-method only UIO sequences are used as state
identifiers in the transition checking phase.

Figure 3 depicts the ratios of length of the test
suites of the HIS/Wp, UIOv, H and UIO methods
over the length of the W-based test suites for the
(groups of) experiments depicted in rows 1 to 22 of
Table 1. The HIS/Wp (UIOv, H, UIO, DS) test suites
are on average 0.61 (0.65, 0.4, 0.27, 0.36) percent of
those of the W method. According to these
experiments these ratios, for all except the UIOv, are
almost independent of the size of the specification.
For the UIOv, in some cases, for large machines,
when the number of inputs/outputs is small in
comparison to the number of states (see for example
rows 17 and 20 of Table 1), the UIOv produces test
suites that are longer than those of the W method. The

reason can be that the W set that contains all UIO is
worse for test derivation than a distinguishability set
that contains a shortest distinguishing sequence for
each pair of states. On average, the ratio of the length
of UIOv test suites over the length of the W test suites
is 0.65.

For a given reduced FSM M with n states and k
input symbols, the worst-case length of the test suite
generated using the W, Wp, HIS, H, UIOv and UIO
methods is of the order kn3 for a reduced completely
specified FSM [4, 20]. In practice, according to the
conducted experiments, the test suites derived by
these methods have length of the order cn2, where the
constant c is 5 for the W method and 4 for the Wp,
HIS, UIOv and H methods. We also experimented
how long are UIO sequences when those exist.
According to the obtained results, the average length
of UIO sequences equals to two and is independent
of the size of the specification.

Columns XIII and XIV of Table 1 show how many
times (out of the 50) the UIO and DS methods are
applicable. On average, the UIO method is applicable
to 99% of all conducted experiments and it seems
that its applicability is independent of the size of the
specification. On average, the DS method is
applicable only to 19% of all conducted experiments
and its applicability significantly decreased as the
ratio of the number of outputs to the number of states
of the specifications decreases. For example, on
average, the DS was applicable to 65% of all
conducted experiments when the ratio of the number
of outputs to the number of states is more than 0.2
(rows 1, 2 and 3 of Table 1). However, this
applicability drops to 14% when the ratio is between
0.1 and 0.2.

Knowing that the UIO method generates (when
applicable) shorter test suites than all other methods,
we conducted experiments to have an idea about the
fault detection capability of these suites. Table 2

 7

contains the details of these experiments. Each row
of Table 2 corresponds to a group of 50 randomly
generated completely specified reduced
specifications. For each of these specifications, we
derive a test suite using the UIO method (when
applicable) and explicitly derive all possible faulty
implementations of the specification. Then, we
determine how many of these implementations are
killed (detected) by the derived test suite. We
consider in our experiments small size specifications
with two to six states (n = 2, 3, 4, 5, 6), two inputs (k
= 2) and outputs, since explicit enumeration is only
possible for small size implementations.

Fig. 3 Ratios: HIS/Wp, UIOv, H and UIO Test

Suites over W test suites

As shown in Table 2, on average, when applicable,
41% of the UIO test suites are incomplete. Moreover,
when the number of states compared with the number
of outputs increases the possibility having incomplete
test suites increases.

Table 2. Fault Coverage of UIO Test Suites

 I
- N

o.
 o

f S
ta

te
s,

 n

 I
I-N

o.
 o

f I
np

ut
s,

 k

 I
II-

 N
o.

 o
f O

ut
pu

ts

 I
V-

 N
o.

 o
f E

xp
er

im
en

ts
 (o

ut
 o

f
50

)
w

he
re

 U
IO

 is
 A

pp
lic

ab
le

 V
- N

o.
 o

f C
om

pl
et

e
Te

st
 S

ui
te

s

 V
I-

%
 o

f C
om

pl
et

e
U

IO
 T

es
t

Su
ite

s

2 2 2 50 50 100
3 2 2 50 50 100
4 2 2 38 27 71
5 2 2 43 11 26
6 2 2 12 0 0

 Average 59

4.1 Case Study

This section presents the application and the
comparison of the different test generation methods
to the Simple Connection Protocol (SCP). The SCP
allows to connect an entity called the upper layer
with the entity called the lower layer (see Appendix).
The upper layer performs a dialogue with SCP to fix
the quality of service (QoS) desirable for the future
connection. Once the negotiation is reached, SCP
dialogues with the lower layer to ask for the
establishment of a connection satisfying the quality
of service previously negotiated. The lower layer
accepts or refuses this connection request. If it
accepts the connection, SCP informs the upper layer
that the connection was established and the upper
layer can start to transmit data towards the lower
layer via SCP. Once the transmission of the data
finished, the upper layer sends a message to close the
connection. On the other hand, if the lower layer
refuses the connection, the system allows SCP to
make three requests before informing the upper layer
that all the connection attempts failed. If the upper
layer again wishes to be connected to the lower layer,
it is necessary to restart the QoS negotiation with
SCP from the beginning. This protocol illustrates the
applicability of the above methods to real protocols.

We use the Specification and Description
Language (SDL) [10] to describe the specification of
the SCP protocol and then obtain an equivalent (with
the same set of traces) FSM. The obtained FSM has
n=26 states, 11 inputs, 12 outputs, and 286
transitions. We apply the W, Wp, HIS, and H test
derivation methods to the obtained FSM and we get
test suites of length 24490, 5229, 6125, and 4223,
respectively. The Wp (HIS, H) test suites are on
average 0.21 (0.25, 0.17) percent of those of the W
method. Moreover, similar to the experiments
reported in Table 1, the SCP W, Wp, HIS, and H test
suites have length of the order cn2, where the
constant c is 5. We note that the UIO and DS
methods are not applied to the SCP protocol since its
FSM does not have a DS and UIOs.

5. Conclusion

In this paper, experiments with the W, Wp, HIS, H,
UIOv, UIO, and DS FSM-based conformance testing
methods have been presented. These experiments
allow to determine and to compare the length and the
effectiveness of the test suites generated by these
methods. In particular, the experiments show that W

 8

test suites are significantly longer than those derived
by all other methods. The length of the Wp and HIS
test suites almost coincide and are larger than those
of the suites derived by DS, UIO, and H methods.
Test suites derived by the UIO method are the
shortest and the UIO method is applicable to 99% of
the conducted experiments. However, when
applicable, experiments with small size specifications
show that 41% of the UIO test suites are incomplete.
Test suites derived by the DS and H methods are
comparable and significantly shorter than those
derived by the W, Wp, HIS, and UIOv methods.
However, the DS method is applicable only to 19%
of all conducted experiments and its applicability
significantly decreases as the ratio of the number of
outputs to the number of transitions decreases. The
order of all derived test suites is O(cn2) which is
lower than the theoretical worst-case order O(kn3),
where n is the number of states of the
specification/implementation machines, k is the
number of inputs, and c is a constant less than or
equal to 5. The experiments are conducted on
randomly generated specifications and on a realistic
protocol called the Simple Connection Protocol.

6. References

[1] G. v. Bochmann, A. Petrenko, “Protocol testing: review
of methods and relevance for software testing,” Proc.
International Symposium on Software Testing and
Analysis, Seattle, 1994, pp. 109-123.

[2] I. Bourdonov, A. Kossatchev, A. Petrenko, and D.
Galter. “KVEST: Automated Generation of Test Suites
from Formal Specifications”. Lecture Notes in Computer
Science, N 1708, pp. 608-621, Proceedings of World
Congress of Formal Methods, Springer-Verlag, Toulouse,
France, 1999.

[3] W.-H. Chen, Executable test sequence for the protocol
data flow property, Proc. of Formal Description
Techniques for Distributed Systems and Communication
Protocols, and Protocol Specification, Testing, and
Verification, FORTE/PSTV’01, 2001, Cheju Island, Korea.

[4] T. S. Chow, “Test design modeled by finite-state
machines,” IEEE Trans. SE, vol. 4, no.3, 1978, pp. 178-
187.

[5] R. Dorofeeva, K. El-Fakih, N. Yevtushenko, “An
improved FSM-based conformance testing method”, Proc.
of the IFIP 25th International Conference on Formal
Methods for Networked and Distributed Systems, Taiwan,
Oct. ‘05 (to appear).

[6] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou,
and A. Ghedamsi, “Test selection based on finite state
models,” IEEE Trans. SE, vol. 17, no. 6, 1991, pp. 591-
603.

[7] A. Gill, Introduction to the Theory of Finite-State
Machines, McGraw-Hill, 1962.

[8] F. C. Hennie, “Fault detecting experiments for
sequential circuits”, in Proc. of 5th Annual Symposium on
Switching Circuit Theory and Logical Design, Princeton,
1964, pp. 95-110.

[9] E. P. Hsieh, “Checking experiments for sequential
machines”, IEEE Trans. on Computers, Vol. 20, No. 10,
1971, pp. 1152-1166.

[10] ITU-T, Recommendation Z. 100-Specification and
Description Language SDL Geneva, 1992.

[11] Z. Kohavi, Switching and Finite Automata Theory.
New York, McGraw- Hill, 1978, p. 658.

[12] I. Koufareva, M. Dorofeeva. “A novel modification of
W-method”. Joint Bulletin of the Novosibirsk computing
center and A.P. Ershov institute of informatics systems.
Series: Computing science, issue: 18, 2002, NCC
Publisher, Novosibirsk. - PP. 69-81.

[13] D. Lee and M. Yannakakis, “Principles and methods
of testing finite state machines-a survey”, Proceedings of
the IEEE, vol. 84, no. 8, 1996, pp. 1090-1123.

[14] A. Petrenko, “Checking experiments with protocol
machines,” Proc. 4th Int. Workshop on Protocol Test
Systems (IWPTS), 1991, pp. 83-94.

[15] A. Petrenko, N. Yevtushenko, A. Lebedev, and A.
Das, “Nondeterministic state machines in protocol
conformance testing,” Proc. of the IFIP 6th IWPTS,
France, 1993, pp. 363-378.

[16] A. Petrenko and N. Yevtushenko, “On test derivation
from partial specifications”, Proceedings of the IFIP Joint
International Conference, FORTE/PSTV'2000, on Formal
Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification,
Testing, and Verification, Italy, 2000, pp. 85-102.

[17] K. Sabnani and A. Dahbura, “A protocol test
generation procedure,” Computer Networks and ISDN
Systems, vol. 15, no. 4, 1988, pp. 285-297.

[18] D. P. Sidhu, and T. K. Leung, “Formal methods for
protocol testing: a detailed study,” IEEE Trans. SE, vol.
15, no. 4, 1989, pp. 413-426.

[19] M. P. Vasilevskii, “Failure diagnosis of automata,”
translated from Kibernetika, No.4, 1973, pp. 98-108.

 9

http://www.ispras.ru/%7ERedVerst/RedVerst/Staff/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Staff/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Staff/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Staff/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Staff/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Publications/KVEST - Automated Generation of Test Suites from Formal Specifications/Main.html
http://www.ispras.ru/%7ERedVerst/RedVerst/Publications/KVEST - Automated Generation of Test Suites from Formal Specifications/Main.html

[20] M. Yannakakis and D. Lee, “Testing finite state
machines: fault detection”, Journal of Computer and
System Sciences, 50, 1995, pp. 209-227.

[21] N. Yevtushenko and A. Petrenko, Test derivation
method for an arbitrary deterministic automaton,

Automatic Control and Computer Sciences, Allerton Press
Inc., USA, #5, 1990.

[22] S. T. Vuong, W.W.L. Chan, and M.R. Ito, “The UIOv-
method for protocol test sequence generation,” Proc. of the
IFIP TC6 2nd IWPTS, North-Holland, 1989, pp. 161-175.

Appendix: The SCP Protocol Messages

 Upper Layer

 CONreq(qos) with qos∈[0,3], connect(ReqQos) with ReqQos∈[0,3], accept(qos) with qos∈[0,3],
 CONcnf(+,FinQos) with FinQos∈[0,3] and data(FinQos) with FinQos∈[0,3].

Simple Connection Protocol

Lower Layer

CONcnf(+,FinQos)
or CONcnf(-) Data Reset CONreq(qos) NONsupport(ReqQos)

accept(qos)
or refuse connect(ReqQos) data(FinQos) abort

 10

	1. Introduction
	2. Finite State Machines
	3. Overview of Test Derivation Methods
	3.1. State identification facilities

	�
	3.2 Test Derivation Methods

	4. Experimental Results
	4.1 Case Study

	5. Conclusion
	6. References

