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Abstract 

 
The development of test cases is an important 

issue for testing software, communication protocols 
and other reactive systems. A number of methods are 
known for the development of a test suite based on a 
formal specification given in the form of a finite state 
machine. Well-known methods are called the W, Wp, 
UIO, UIOv, DS, H and HIS test derivation methods. 
These methods have been extensively used by 
research community in the last years; however no 
proper comparison has been made between them. In 
this paper, we experiment with these methods to 
assess their complexity, applicability, completeness, 
fault detection capability, length and derivation time 
of their test suites. The experiments are conducted on 
randomly generated specifications and on a realistic 
protocol called the Simple Connection Protocol.  
 
1. Introduction 
 

The development of test cases based on a formal 
model is an important issue for software testing 
including conformance testing of communication 
protocols and other reactive systems. A number of 
methods are known for the development of a test suite 
based on a specification given in the form of a finite 
state machine. Well known methods are called the W, 
Wp, UIO, UIOv, DS, H and HIS test derivation 
methods [4, 6, 15, 19, 22, 21, 17]. For related surveys 
the reader may refer to [18, 1, 20, 13]. In particular, 
in the last years an increasing research has been 
developed on the application of these methods to 
object oriented software [2]. 

In FSM-based testing, one usually assumes that not 
only the specification, but also an implementation can 
be modeled as a deterministic FSM. If the behavior of 
an implementation FSM is different than the specified 
behavior, the implementation contains a fault. Two 
types of implementation faults are usually considered, 

namely output and transfer faults. An implementation 
has an output fault if the output of one of its 
transitions is different from that of the specification 
and an implementation has a transfer fault if the next 
state of a transition is different from that of the 
specification. Moreover, an implementation has 
multiple faults if it has many output or transfer faults 
[1, 4, 6, 15, 18, 22, 21].  

The above methods, except the UIO method, each 
provides the following fault coverage guarantee: If 
the specification can be modeled by an FSM with n 
states and if an implementation can be modeled by an 
FSM with at most m states, where m is larger or equal 
to n, then a test suite can be derived by the method 
(for this given m) and the implementation passes this 
test suite if and only if it conforms (i.e. is equivalent) 
to the specification (that is, the implementation does 
not contain output and transfer faults). Moreover, all 
of the above methods assume that a reliable reset is 
available for each implementation under test (written 
as ‘r’). This implies that the test suite can be 
composed of several individual test cases, each 
starting with the reset operation. 

All of the above methods use certain state 
distinguishing input sequences (called state 
identifiers) in test derivation, and thus, can be only 
applied when all states of the specification FSM are 
pairwise distinguishable. Moreover, the length of a 
derived test suite essentially depends how state 
identifiers are selected. The DS method can be 
thought of as a particular case of the W method. 
However, the DS method is not always applicable 
even for complete reduced specifications [7]. The Wp 
method is an improvement to the W method and thus 
is expected to generate shorter test suites. Also, the 
UIOv method can be thought of as a particular case of 
the Wp and is expected to generate shorter test suites. 
The UIO method employs part of the UIOv method 
and thus generates shorter test suites. However, UIO 
test suites are not always complete [22]. In the so-
called H method [12, 5], unlike all other methods, for 
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every state of the specification FSM, appropriate state 
identifiers are selected on the fly (i.e. not in advance) 
in order to shorten the length of the resulting test 
suite. The H method generates a complete test suite 
and is always applicable for any complete reduced 
specification.  

The methods have been studied and applied by 
research community in the last years. However, no 
comparison has been provided on the applicability, 
completeness and efficiency of these methods. In this 
paper we implement and experiment with the above 
methods (for the case when the number of states of an 
implementation is not more than that of the 
specification) in order to: (i) determine and compare 
the length and derivation time of their test suites, (ii) 
determine how often the UIO and DS methods are not 
applicable and how often the UIO method (when 
applicable) generates incomplete test suites, (iii) 
determine the fault detection capability of the UIO-
based incomplete test suites, and (iv) compare length 
of obtained test suites with that obtained using the 
corresponding theoretic worst-case upper-bound. The 
experiments are conducted on randomly generated 
specifications and on a realistic protocol called the 
Simple Connection Protocol (SCP) [3].  

This paper is organized as follows. Section 2 
defines notations for describing finite state machines 
and Section 3 includes an overview of the W, Wp, 
HIS, H, UIOv, UIO, and DS test derivation methods. 
Sections 4 and 5 include the experimental results and 
Section 6 concludes the paper.  

 
2. Finite State Machines 
 

This section contains the definition of basic 
concepts that are used in the rest of the paper. 

Definition 2.1  A deterministic finite state machine 
is an initialized complete deterministic Mealy  
machine that can formally be defined as a 6-tuple M = 
(S,X,Y,δM,λM,s1) [7], where S is a finite set of states, 
s1 is the initial state, X is a finite set of input symbols, 
Y is a finite set of output symbols, δM is a next state 
(or transition) function:δM: S×X →S, λM is an output 
function: λM:  S×X →Y. In usual way, functions δM 
and λM are extended to input sequences.  

Definition 2.2 A FSM A is called connected if for 
each state s∈S there exists an input sequence αs that 
takes FSM A from the initial state to state s. The 
sequence αs is called a transfer sequence for the state 
s.  

Definition 2.3 A set Q of input sequences is called 
a state cover set of FSM M if for each state si of S, 

there is an input sequence αi∈Q that takes FSM from 
the initial state to state si. If FSM is connected, i.e. if 
each state is reachable from the initial state, then a 
state cover set always exists. We further assume that 
the specification FSM M is a connected FSM1 and 
consider only prefix-closed state cover sets, i.e. a 
state cover set contains all prefixes of each sequence.  

Definition 2.4 Let M = (S, X, Y, δM, λM, s1) and I 
= (T, X, Y, δI, λI, t1) be two FSMs. In the following 
sections M usually represents a specification while I 
denoting an implementation. We say that two states sj 
of M and ti of I are equivalent [7], written sj ≅ ti, if 

for each input sequence α ∈ X* it holds that λM(sj, 
α) = λI(ti, α). Otherwise, we say that states si and tj 
are distinguishable, written sj ≇ ti.  

 
Definition 2.5 An input sequence α ∈ X* such that 

λM(sj, α) ≠ ΛI(ti, α) is said to distinguish the states sj 
and ti. FSMs M and I are equivalent, written M ≅ I, 
(distinguishable, written M ≇ I) if their initial state 
are equivalent (distinguishable). 

 
Definition 2.6  An FSM is said to be reduced if its 

states are pair-wise distinguishable.  
 
Definition 2.7 We say that I conforms to M if and 

only if FSMs I and M are equivalent. In other words, 
for each input sequence the output responses of M 
and I coincide [7, 17, 18]. 

 
Definition 2.8 Given a specification FSM M, the 

fault domain J(X) of M is the set of all possible 
implementations of M defined over the input alphabet 
X of M.  Similar to [16] we let Jm(X) denote the set of 
all complete FSMs defined over the input alphabet X 
with up to m states. A test suite TS is a finite set of 
finite input sequences of the specification FSM M.  

 
Definition 2.9 A test suite TS is m-complete if for 

each implementation I ∈ Jm(X) that is distinguishable 
from M, there exists a sequence in TS that 
distinguishes M and I.  

 

                                                           
1 We consider only connected FSMs without loss of 
generality, since any state of an FSM that is 
unreachable from the initial state, does not influence 
the behavior of the FSM. 
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3. Overview of Test Derivation Methods 
 
This section includes an overview of test derivation 

methods. All these methods, except the UIO, have 
two phases. Tests derived for the first phase check 
that each state presented in the specification also 
exists in the implementation, while tests derived for 
the second phase check all (remaining) transitions of 
the implementation for correct output and ending 
state as defined by the specification. For identifying 
the state during the first phase and for checking the 
ending states of the transitions in the second phase, 
certain state distinguishing input sequences are used.  

The only difference between the above methods is 
how such distinguishing sequences are selected. In 
the original W method, a so-called characterization 
set W (or simply W set) is used to distinguish the 
different states of the specification. The Wp method 
uses the W set during the state identification phase 
(the first phase) while only an appropriate subset, 
namely a corresponding state identifier, is used when 
checking the ending state of a transition. In the HIS 
method a family of state identifiers is used for state 
identification as well as for transition checking. In the 
UIOv method, which is a proper sub-case of the Wp 
method, the state identifier of each state has a single 
Unique Input Output (UIO) sequence. Such an UIO 
allows to distinguish the expected ending state of a 
transition from all other states of the specification. A 
test suite is shortened; however, an UIO sequence 
may not exist for some states of a given specification 
FSM.  

In subsection 3.2 we briefly describe the test 
derivation methods [4, 6, 15, 22, 12]. Meanwhile, we 
describe the state identification utilities used by these 
methods. 

 
3.1. State identification facilities 

In order to check that each state and each transition 
defined in the specification also exists in the 
implementation, the methods use certain input/output 
behaviors that can distinguish the states of an FSM. 
Consider a reduced specification FSM M = 
(S,X,Y,δM,λM,s1). 

A characterization set of the FSM M, often simply 
called a W set, is a set of input sequences defined 
over the input alphabet of M that satisfies the 
condition: For any two states si and sj, i ≠ j, ∃ β ∈ W 
such that λM(si, β) ≠ λM(sj, β). That is for any two 
states of M, the W set includes a sequence that 
distinguishes these states. A W set always exists for a 
reduced FSM.  

Given state sj ∈ S of FSM M, a set Wj of input 
sequences is called a state identifier (or a separating 
set) of state sj if for any other state si there exists α ∈ 
Wj such that λM(sj, α) ≠ λM(si,α). A separating 
family [20] (or a family of harmonized identifiers [14, 
15]) is a collection of state identifiers Wj, sj∈S, which 
satisfy the condition: For any two states sj and si, j ≠ 
i, there exist β ∈ Wj and γ ∈ Wi which have common 
prefix α such that λM(sj, α) ≠ λM(si, α).  A 
separating family always exists for a reduced FSM.  

Given a state si of the specification FSM M, let αi 
be an input sequence such that for any state sj, i ≠ j, 
λM(si, αi) ≠ λM(sj, αi). Then αi/βi where βi = λM(si, 
αi), is said to be a Simple Input/Output Sequence [9] 
or a Unique Input/Output (UIO) sequence [17], for 
state si. Let each state of the specification FSM have 
an UIO αi/βi and {α1, α2, ... αn} be the set of input 
parts of all these UIOs. Then the set {α1, α2, ... αn} 
is known to be a W set.  We note that a UIO sequence 
may not exist for some states of a reduced FSM. 

Let α be an input sequence such that for any two 
states si and sj , i ≠ j, of the specification FSM M it 
holds that λM(si, α) ≠ λM(sj, α). Then α is said to be 
a distinguishing sequence or diagnostic sequence 
(DS) [7, 8, 11] for the specification machine M. The 
set {α} is a W set.  

For a distinguishing sequence α, let βi = λM(si, α), 
i = 1, 2, ..., n. Then α/β1, α/β2, ... α/βn are UIO 
sequences for the n states s1, s2, ..., sn, respectively. 
A distinguishing sequence may not exist for some 
reduced FSMs [7]. 

As an application example, consider the 
specification FSM M shown in Fig. 1 with inputs X = 
{x, y} and outputs Y = {0, 1}.  

s1

s3

s2

s4

y/0

x/0x/1
y/0

x/1

x/1

y/0

y/1

 
Figure 1. Specification FSM M 

 
The specification M admits the set of sequences {x, 

y, yy} as a W set. From the above, we get the 
following state identifiers, W1 = {yy}, W2 = {y}, W3 

= {x}, and W4 = {x, yy}. In order to obtain a 
separating family from these identifiers, we 
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harmonize W2 and W3 by adding the input x into W1 
and W2 and y into W3, and obtain as a separating 
family the set F = {H1, H2, H3, H4}, where H1 = {x, 
yy}, H2 = {x, y}, H3 = {x}, and H4 = {x, yy}.  

The FSM M has the sequence yyy as a 
distinguishing sequence. For states s1, s2, s3, and s4 
of M, we have, in response to yyy, the output 
sequences 010, 100, 001, and 000, respectively.  

 
3.2 Test Derivation Methods 

Given a reduced complete specification FSM M = 
(S, X, Y, δM, λM, s1), |S|=n, let W be a 
characterization set of M and F = {W1,…, Wn} be a 
separating family of M.   

The test derivation methods have two phases in 
order to test the equivalence of I and M.  

Given a reduced complete specification FSM M = 
(S, X, Y, δM, λM, s1), |S|=n, let W be a 
characterization set of M and F = {W1,…, Wn} be a 
separating family of M.   

The test derivation methods have two phases in 
order to test the equivalence of I and M.  

 
State identification phase:  
This phase checks that each state specified by M 

also exists in I using a characterization set W (W, Wp, 
UIOv and DS methods), or a separating family F 
(HIS method). We note that for the UIOv method, the 
W set consists of the input parts of the UIOs of M and 
for the DS method the W set consists of a single 
sequence, namely a DS of M. 

Given a prefix-closed state cover set Q = {α1, 
α2,…, αn} of the specification FSM, for each state sj 

∈ S, the state identification phase comprises the 
sequences: 

 r.αj.Hj (in the HIS method)  or    
r.αj.W  (in the W, Wp, DS, and UIOv methods).  
Each test sequence starts from the initial state, after 

the application of the reset input r. In this case, in the 
W, Wp, DS and UIOv methods, to identify the ending 
state sj after applying an input sequence αj, all the 
sequences contained in W are applied to I, separately. 
However, in the HIS it is enough to apply the 
sequences of the state identifier set Hj of sj. 

 
Transition testing phase:  
This phase assures that for each transition of M 

there exists a corresponding transition in I. For this 
purpose, for each sequence αj ∈ Q that takes the 
specification FSM to appropriate state sj, and each 

x∈X that takes the M from state sj to state sk, the 
transition testing phase includes the following set of 
test sequences:  

r.αj.x.Hk in the HIS method,  
r.αj.x.Wk in the UIOv and Wp methods, where Wk 

⊆W is a state identifier or a corresponding UIO of the 
state sk  or  

r.αj.x.W in the W method. 
If FSM I = (T, X, Y, ∆I, ΛI, t1) has at most n states 

and passes the test sequences of both testing phases, 
then I is equivalent to the specification FSM, i.e. I is a 
conforming implementation. 

The UIO method [17] is based on UIO sequences 
and it employs only the second testing phase. It was 
originally claimed [17] that a test suite derived using 
the UIO method is complete w.r.t. all 
implementations with up to n states. However, a 
counter-example was later given in [22] that proves 
that the UIO method does not guarantee complete 
fault coverage.  

The H method [12, 5] can be regarded as an 
improvement to the HIS method. The main idea of the 
H method is not to use a priori derived state 
identifiers. State identifiers are constructed, based on 
already derived test cases, in order to distinguish the 
ending states of transitions. Thus, different state 
identifiers can be used when testing transitions with 
the same ending state.  

Example: As an application example of the above 
methods, consider the FSM M of Figure 1. We recall 
that M admits as a characterization set the set W = {x, 
y, yy}, as state identifiers the sets W1= {yy}, W2 = 
{y}, W3 = {x}, and W4 = {x, yy}, and the set F= { H1, 
H2, H3, H4} as a separating family of harmonized 
state identifiers, where H1 = {x, yy}, H2 = {x, y}, H3 

= {x}, and H4 = {x, yy}. Moreover, M has the state 
cover set Q = {α1, α2, α3, α4}, where α1= ε, α2= y, 
α3=x, and α4= yy.  

 
W method application:  
Based on the above sets, in the W method, the state 

identification phase yields the test sequences TSW: 
r.{α1, α2 , α3, α4}.W and the transition testing phase 
yields the test sequences: r.{α1, α2, α3, α4}{x,y}W.  
We replace the α’s and W’s in the above sequences 
by their corresponding values and then remove from 
the obtained set those sequences that are proper 
prefixes of other sequences and obtain TSW = {rxxx, 
rxxyy, rxyx, rxyyy, ryxx, ryxyy, ryyxx, ryyxyy, ryyyx, 
ryyyyy} of total length 49.  
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Wp method application:  
In the Wp method, in addition to the state 

identification sequences, the transition testing phase 
yields the sequences TSWp: r.α1.x.W3 + r.α1.y.W2 + 
r.α2.x.W2 + r.α2.y.W4 + r.α3. x.W2 + r.α3.y.W1 + 
r.α4.x.W3 + r.α4.y.W4. We replace the α’s and W’s 
by their corresponding values and obtain TSWp = 
{rxxy, rxyyy, ryxy, ryyxx, ryyyx,  ryyyyy} of total 
length 29. Similarly, we apply the HIS method and 
obtain the test suite TSHIS = {rxxx, rxxy, rxyx, rxyyy, 
ryxx, ryxy, ryyxx, ryyyx, ryyyyy} of total length 41. 
We note here that for this example, the first parts for 
the state identification phases in Wp and HIS 
methods coincide and for this reason the Wp returns a 
shorter test suite knowing that we do not need to 
harmonize, as in the HIS, the state identifiers.  

 
H method application:  
In the H method, in the state identification phase, 

we obtain the sequences {rxx, ryx, ryyx, ryyyy} using 
the same state identifiers W1= {yy}, W2 = {y}, W3 = 
{x}, and W4 = {x, yy}. In the transition testing phase, 
consider the transition from state s3 under input x 
with the final state s2.  In order to test this transition, 
we apply the input sequence r.α3.x.y = r.x.x.y instead 
of applying the sequences r.α3.x.H2 = r.x.x.{x, y} as 
in the HIS method. This is done since the input y is 
already applied, in the state identification phase, at 
each state of the implementation (if the 
implementation passes the sequences of the state 
identification phase) and thus we can use y in the 
transition testing phase instead of using as in the HIS 
method the harmonized state identifier H2 = {x, y}. 
Similarly, we derive identifiers to check all other 
transitions. The obtained test suite TSH = {rxxy, 
rxyyy, ryxy, ryyxx, ryyyyyy} is of total length 25.  

 
DS method application:  
When constructing a characterization set we derive 

a shortest distinguishing sequence for each pair of 
different states of the specification FSM. However, 
sometimes such sequences do not yield the shortest 
test suite. By direct inspection, one can assure that the 
FSM M of our working example has a distinguishing 
sequence yyy. Thus, we can select as harmonized state 
identifiers the sets Z1 = {yy}, Z2 = {y}, Z3 = {yyy}, 
and Z4 = {yyy}. In this case, the HIS method returns a 

test suite TSDS = {rxxy, rxyyy, ryxy, ryyxyyy, ryyyyyy} 
with total length 27.  

 
4. Experimental Results  
 

In this section we experiment with the above 
described methods with the following objectives: (i) 
determine and compare the length and derivation time 
of their test suites, (ii) determine how often the UIO 
and DS methods are not applicable and how often the 
UIO method (when applicable) generates incomplete 
test suites, (iii) determine the fault detection 
capability of some UIO-based incomplete test suites, 
and (iv) compare length of the obtained test suites 
with the theoretical upper-bound. 

For every pair of (different) states of M, we 
generate a shortest input sequence that distinguishes 
this pair [7, 19]. The set of all obtained distinguishing 
sequences is a W set of the specification FSM M. The 
subset of all obtained sequences that distinguish a 
state si from all other states of M is a state identifier 
(Wi) of si. The set of all state identifiers is a 
separating family (F) of M. An algorithm for deriving 
a distinguishing sequence (if exists) for a given FSM 
is given in [11]. We derive UIO sequences using the 
distinguishing tree algorithm given in [7].  

Table 1 provides a comparison between the length 
of test suites obtained by these methods and their 
derivation time in seconds. The comparison is based 
on randomly generated completely specified reduced 
specifications with a varying number of 
inputs/outputs and states (n). 

Each row of Table 1 corresponds to a group of 50 
randomly generated completely specified reduced 
specifications. For each of these specifications we use 
the W, Wp, HIS, UIOv and H methods to derive 
corresponding test suites. Moreover, we also derive 
test suites using the UIO and DS methods when the 
specifications have UIO and DS sequences. Then, we 
calculate the average length and derivation time (in 
seconds) of test suites generated for each group using 
each of these methods as shown in Columns VI to 
XII, respectively. We also calculate for each group 
how many times (out of 50) the UIO and DS methods 
were applicable and the average length for their test 
suites as shown in Columns XIII and XIV, 
respectively.  
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Table 1: A Summary of Conducted Experiments 
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(3.58) 

2710 
(8.00) 50 30 

8 60 6 6 360 
6891 
(6.26) 

4138 
(4.90) 

4138 
(1.58) 

4933 
(5.32) 

2697 
(0.48) 

1,690 
(3.34) 

2250 
(19.0) 50 1 

9 60 8 8 480 
7814 
(6.79) 

4844 
(5.14) 

4844 
(2.67) 

4250 
(4.30) 

3185 
(0.71) 

2229 
(3.34) 

2660 
(48.0) 50 12 

10 60 10 10 600 
8978 

(10.37) 
5443 
(8.48) 

5490 
(3.91) 

4178 
(6.20) 

3656 
(1.16) 

2758 
(5.16) 

3269 
(9.50) 50 15 

11 70 6 6 420 
8245 
(6.76) 

5047 
(7.40) 

5047 
(2.27) 

6795 
(9.18) 

3274 
(0.68) 

2010 
(5.20) 

2650 
(11.0) 50 1 

12 70 8 8 560 
9271 
(9.71) 

5899 
(7.80) 

5899 
(3.30) 

5539 
(6.72) 

3898 
(1.01) 

2639 
(4.86) 

3625 
(22.0) 50 2 

13 70 10 10 700 
11012 
(14.65) 

6673 
(13.6) 

6694 
(4.83) 

5280 
(10.2) 

4344 
(1.42) 

3262 
(8.16) 

3892 
(55.5) 50 13 

14 80 6 6 480 
9890 

(10.25) 
6082 
(12.5) 

6078 
(3.04) 

9296 
(17.0) 

3882 
(0.87) 

2328 
(8.72) - 49 0 

15 80 8 8 640 
11243 
(15.58) 

6980 
(11.5) 

6980 
(4.64) 

7132 
(10.6) 

4588 
(1.48) 

3055 
(7.18) 

4200 
(47.0) 50 1 

16 80 10 10 800 
13144 
(20.93) 

7892 
(17.7) 

7892 
(6.79) 

6624 
(13.8) 

5216 
(2.15) 

3771 
(10.4) 

4466 
(35.5) 50 3 

17 90 6 6 540 
11522 
(14.09) 

7005 
(18.4) 

7045 
(4.19) 

12004 
(27.7) 

4426 
(1.18) 

2659 
(13.8) - 50 0 

18 90 8 8 720 
13254 
(20.36) 

8138 
(15.5) 

8159 
(6.30) 

8624 
(15.2) 

5285 
(2.02) 

3466 
(9.58) 

4716 
(39.0) 50 3 

19 90 10 10 900 
15129 
(28.59) 

9194 
(25.1) 

9194 
(9.13) 

7911 
(20.0) 

6078 
(2.78) 

4293 
(14.8) 

5935 
(76.0) 50 8 

20 100 6 6 600 
13261 
(18.35) 

8031 
(23.9) 

8031 
(5.52) 

14576 
(37.1) 

4976 
(1.57) 

3012 
(17.6) - 50 0 

21 100 8 8 800 
15091 
(26.61) 

9332 
(22.1) 

9332 
(8.43) 

10486 
(23.1) 

6020 
(2.57) 

3892 
(14.3) - 50 0 

22 100 10 10 1,000 
17204 
(41.99) 

10503 
(33.7) 

10503 
(11.79) 

9248 
(27.7) 

6880 
(3.75) 

4810 
(20.0) 

6602 
(36.0) 50 7 
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Figure 2. Average length of the W, Wp, HIS, UIOv, H, UIO and DS Test Suites. 

 
Figure 2 depicts the average length of test suites 

and sorted according to Column V (number of 
transitions), derived using the testing methods. The 
UIO method generates shorter test suites than all 
other methods. However, on average, most of the 
UIO test suites are incomplete (more analysis on the 
completeness of the UIO test suites is given below). 
The DS and H methods generate test suites of 
comparable length. However, unlike the H method, 
the DS method is not always applicable and the 
experiments show that it becomes less applicable as 
the ratio of the number of outputs to the number of 
transitions decreases (more detailed analysis is given 
below). The HIS and Wp test suites are of 
comparable length. The reason for that could be that 
state identifiers used by Wp method do not need to be 
harmonized and thus, are shorter than those used by 
HIS method. The HIS/Wp methods generate shorter 
suites than those of the W method, as expected. The 
UIOv did not perform better than the HIS and Wp 
method; that also is expected as UIOv is a particular 
case of the Wp-method. Moreover, differently from 
Wp-method only UIO sequences are used as state 
identifiers in the transition checking phase. 

Figure 3 depicts the ratios of length of the test 
suites of the HIS/Wp, UIOv, H and UIO methods 
over the length of the W-based test suites for the 
(groups of) experiments depicted in rows 1 to 22 of 
Table 1. The HIS/Wp (UIOv, H, UIO, DS) test suites 
are on average 0.61 (0.65, 0.4, 0.27, 0.36) percent of 
those of the W method. According to these 
experiments these ratios, for all except the UIOv, are 
almost independent of the size of the specification. 
For the UIOv, in some cases, for large machines, 
when the number of inputs/outputs is small in 
comparison to the number of states (see for example 
rows 17 and 20 of Table 1), the UIOv produces test 
suites that are longer than those of the W method. The 

reason can be that the W set that contains all UIO is 
worse for test derivation than a distinguishability set 
that contains a shortest distinguishing sequence for 
each pair of states. On average, the ratio of the length 
of UIOv test suites over the length of the W test suites 
is 0.65. 

For a given reduced FSM M with n states and k 
input symbols, the worst-case length of the test suite 
generated using the W, Wp, HIS, H, UIOv and UIO 
methods is of the order kn3 for a reduced completely 
specified FSM [4, 20]. In practice, according to the 
conducted experiments, the test suites derived by 
these methods have length of the order cn2, where the 
constant c is 5 for the W method and 4 for the Wp, 
HIS, UIOv and H methods. We also experimented 
how long are UIO sequences when those exist. 
According to the obtained results, the average length 
of UIO sequences equals to two and is independent 
of the size of the specification.  

Columns XIII and XIV of Table 1 show how many 
times (out of the 50) the UIO and DS methods are 
applicable. On average, the UIO method is applicable 
to 99% of all conducted experiments and it seems 
that its applicability is independent of the size of the 
specification. On average, the DS method is 
applicable only to 19% of all conducted experiments 
and its applicability significantly decreased as the 
ratio of the number of outputs to the number of states 
of the specifications decreases. For example, on 
average, the DS was applicable to 65% of all 
conducted experiments when the ratio of the number 
of outputs to the number of states is more than 0.2 
(rows 1, 2 and 3 of Table 1). However, this 
applicability drops to 14% when the ratio is between 
0.1 and 0.2.  

Knowing that the UIO method generates (when 
applicable) shorter test suites than all other methods, 
we conducted experiments to have an idea about the 
fault detection capability of these suites. Table 2 
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contains the details of these experiments. Each row 
of Table 2 corresponds to a group of 50 randomly 
generated completely specified reduced 
specifications. For each of these specifications, we 
derive a test suite using the UIO method (when 
applicable) and explicitly derive all possible faulty 
implementations of the specification. Then, we 
determine how many of these implementations are 
killed (detected) by the derived test suite. We 
consider in our experiments small size specifications 
with two to six states (n = 2, 3, 4, 5, 6), two inputs (k 
= 2) and outputs, since explicit enumeration is only 
possible for small size implementations.  

 
Fig. 3 Ratios: HIS/Wp, UIOv, H and UIO Test 

Suites over W test suites 
 

As shown in Table 2, on average, when applicable, 
41% of the UIO test suites are incomplete. Moreover, 
when the number of states compared with the number 
of outputs increases the possibility having incomplete 
test suites increases. 

Table 2. Fault Coverage of UIO Test Suites 
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2 2 2 50 50 100 
3 2 2 50 50 100 
4 2 2 38 27 71 
5 2 2 43 11 26 
6 2 2 12 0 0 

    Average 59 

 
4.1 Case Study 
 
This section presents the application and the 
comparison of the different test generation methods 
to the Simple Connection Protocol (SCP). The SCP 
allows to connect an entity called the upper layer 
with the entity called the lower layer (see Appendix). 
The upper layer performs a dialogue with SCP to fix 
the quality of service (QoS) desirable for the future 
connection. Once the negotiation is reached, SCP 
dialogues with the lower layer to ask for the 
establishment of a connection satisfying the quality 
of service previously negotiated. The lower layer 
accepts or refuses this connection request. If it 
accepts the connection, SCP informs the upper layer 
that the connection was established and the upper 
layer can start to transmit data towards the lower 
layer via SCP. Once the transmission of the data 
finished, the upper layer sends a message to close the 
connection. On the other hand, if the lower layer 
refuses the connection, the system allows SCP to 
make three requests before informing the upper layer 
that all the connection attempts failed. If the upper 
layer again wishes to be connected to the lower layer, 
it is necessary to restart the QoS negotiation with 
SCP from the beginning. This protocol illustrates the 
applicability of the above methods to real protocols. 

We use the Specification and Description 
Language (SDL) [10] to describe the specification of 
the SCP protocol and then obtain an equivalent (with 
the same set of traces) FSM. The obtained FSM has 
n=26 states, 11 inputs, 12 outputs, and 286 
transitions. We apply the W, Wp, HIS, and H test 
derivation methods to the obtained FSM and we get 
test suites of length 24490, 5229, 6125, and 4223, 
respectively. The Wp (HIS, H) test suites are on 
average 0.21 (0.25, 0.17) percent of those of the W 
method. Moreover, similar to the experiments 
reported in Table 1, the SCP W, Wp, HIS, and H test 
suites have length of the order cn2, where the 
constant c is 5. We note that the UIO and DS 
methods are not applied to the SCP protocol since its 
FSM does not have a DS and UIOs. 
 
5. Conclusion  
 
In this paper, experiments with the W, Wp, HIS, H, 
UIOv, UIO, and DS FSM-based conformance testing 
methods have been presented. These experiments 
allow to determine and to compare the length and the 
effectiveness of the test suites generated by these 
methods. In particular, the experiments show that W 
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test suites are significantly longer than those derived 
by all other methods. The length of the Wp and HIS 
test suites almost coincide and are larger than those 
of the suites derived by DS, UIO, and H methods. 
Test suites derived by the UIO method are the 
shortest and the UIO method is applicable to 99% of 
the conducted experiments. However, when 
applicable, experiments with small size specifications 
show that 41% of the UIO test suites are incomplete. 
Test suites derived by the DS and H methods are 
comparable and significantly shorter than those 
derived by the W, Wp, HIS, and UIOv methods. 
However, the DS method is applicable only to 19% 
of all conducted experiments and its applicability 
significantly decreases as the ratio of the number of 
outputs to the number of transitions decreases. The 
order of all derived test suites is O(cn2) which is 
lower than the theoretical worst-case order O(kn3), 
where n is the number of states of the 
specification/implementation machines, k is the 
number of inputs, and c is a constant less than or 
equal to 5. The experiments are conducted on 
randomly generated specifications and on a realistic 
protocol called the Simple Connection Protocol.  
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Appendix: The SCP Protocol Messages 
 
 

 Upper Layer 

 
 

 
 
 
 
 
 

 
 
 
 
 
 CONreq(qos) with qos∈[0,3], connect(ReqQos) with ReqQos∈[0,3], accept(qos) with qos∈[0,3], 
 CONcnf(+,FinQos) with FinQos∈[0,3] and data(FinQos) with FinQos∈[0,3]. 
 

Simple Connection Protocol 

Lower Layer 

CONcnf(+,FinQos) 
or CONcnf(-) Data Reset CONreq(qos) NONsupport(ReqQos) 

accept(qos) 
or refuse connect(ReqQos) data(FinQos) abort 
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