
A Service-Component Testing Method and a Suitable CORBA Architecture

Ana Cavalli, Bruno Defude, Christian Rinderknecht, Fatiha Zaïdi
Institut National des Télécommunications

9 rue Charles Fourier
F-91011 Évry Cedex

{Ana.Cavalli, Bruno.Defude, Christian.Rinderknecht, Fatiha.Zaidi}@int-evry.fr

Abstract

This paper presents a method for service-component
testing and a suitable CORBA test architecture. This test
environment allows the service validation from its compo-
nents and is a close step towards the execution of the ob-
tained tests on a CORBA environment. Two aspects are rel-
evant: the test of components and the test architecture. The
testing method for components is new: it is based on the
generation of partial graphs and avoids the combinatorial
explosion of number of states of the global system. The test
architecture on a CORBA platform is also new, since there
are few works on testing based on these environments. As
an application we present a case study on a real conference
call service.
Keywords Components testing, test generation, test archi-
tecture, CORBA

1 Introduction

The telecommunication operators are facing the dramatic
growth of new services that utilize the telephonic network
but also mix voice transmission with image and sound trans-
mission. The inherent difficulty of this kind of services lies
on their fast and reliable integration, in order to satisfy the
users’ requirements.

The Intelligent Network (IN) has been the first attempt to
solve this sort of problems and, in the meanwhile, some oth-
ers architectures have been proposed, like TINA, in order
to cope efficiently with the design and the implementation
of new services. These latter must meet the users’ expec-
tations and be definitely reliable. With this aim, after the
design phase, the services should be validated and tested in
order to guarantee that the proposed implementations com-
ply with the requirements. Moreover, because of modularity
and reusability constraints, these services are to be defined
from base components which may further be combined and
reused.

In this paper we present a method for service-component
testing and a Corba test architecture. To illustrate the appli-
cation of the method we present a case study: a conference
call service. Our input is an SDL model of the service we
want to test. Starting from this model, we generate a test se-
quence by using the component test algorithm, Hit-or-Jump.
This sequence is built from the SDL model and is thus ex-
pressed in terms of SDL entities. The values associated to
the exchanged signals have types represented within SDL.
In order to step forward the test execution on a CORBA en-
vironment, this sequence must be transformed to be defined
in terms of CORBA objects, and hence mapped to the IDL
language. Last, an execution environment on a CORBA ar-
chitecture is proposed.

The contribution of this work lies on the methods defini-
tion for the service-component testing and the test execution
architecture on a CORBA environment. At the CFIP99 [7],
we have presented yet a method for the embedded testing,
but this method was based upon the generation of the whole
accessibility graph of the system under test. The method
presented here is new, it is based on the production of par-
tial accessibility graphs and in this way avoids the combi-
natorial explosion of the state number of the global system.

We also present in this work the test execution architec-
ture on a distributed CORBA environment. We give the
principles allowing the test of a CORBA implementation by
combining interactive and purely observational techniques
(also calledpassive testing). This approach is innovative
since, to our knowledge, there exists very few works on val-
idation and test execution for CORBA environments.

This work was achieved in the CASTOR RNRT French
project [2]. The specification of the conference call service
was provided by France Telecom R&D.

This article is organized as follows. In section 2 we give
a short overview of the algorithm used for the derivation of
the service-components tests. Section 3 presents the case
study, the conference call and its components. Moreover,
in this section we present the results of the experiments
we have made. Then section 4 presents a description of



the CORBA environment devoted to test execution, and ex-
plains the principles which guided its design. Last, section 5
gives the conclusions of this work.

2 A service-component testing method

2.1 Preliminaries

In this section we present briefly the method used for the
generation of component tests. A more complete presenta-
tion can be found in [4]. A comparison with the existing
methods [1, 12] is presented in [3]. Some tools devoted to
the embedded testing (ortesting in context) are presented
in [11, 5].

The aim of the method is to test components in their con-
text, i.e. the complement of the component in the system,
because usually there is no direct access to the component.
The system is defined in terms ofCommunicating Extended
Finite-State Machines(CEFSMs), which are based upon
Extended Finite-State Machines(EFSM) defined as follows.

Definition. An EFSM is a 5-tuple� � ��� �� �� ��� � �
where� , �, �, ��, and� are respectively finite sets of input
symbols, output symbols, transitions. Each transition	 in
the set� is a 6-tuple	 � �
�� ��� ��� �� ��� ��� where
�,
��, ��, and� are respectively the start (current) state, the
next state, one input and one output.� ����� is a predicate
on the current values of the variables and� ����� defines an
action on the values of the variables. Initially the machine
is in a state
��� � � with the values of variables�����. Let
the machine be in state
� with the current values of the
variables��. When the input�� occurs, if�� is valid for��,
i.e. ������ � true, then the machine achieves the transition
	, outputs�, changes the current values of the variables by
means of action�� �� ������, and finally reaches the state��.

The case study we present in this paper (conference call
service) is specified with the SDL language [9]. The speci-
fication of behaviours in SDL is based upon CEFSMs. The
actions associated to a transition may include the running of
tasks, procedure calls, dynamic creation of processes (SDL
has the concepts oftypesand type instance) and also the
enabling and disabling of timers.

Until now the research on automatic test generation for
components was based on theexhaustive simulationof these
SDL specifications, i.e. the exploration of the whole state-
space (oraccessibility graph). The first drawback is that,
when testing real-world service components, the number of
states is huge; the second one is that redundant parts may be
explored. To avoid these problems, we have designed and
implemented a new algorithm, calledHit-or-jump, based on
the generation of partial accessibility graphs.

2.2 Outline of the Hit-or-Jump algorithm

The algorithm presented here allows to cover all the
interactions of the component in its context. The essence of
our approach is as follows. At any moment we conduct a
local search from the current state in a neighborhood of the
accessibility graph. If an untested part of the component
is found (a Hit), we keep it for the final test sequence, and
then continue the search process from there. Otherwise,
we move randomly to the frontier of the neighborhood
searched (Jump), and resume the process from there. This
procedure avoids the building of a whole system accessibil-
ity graph. Accordingly, the space required is determined by
the user, e.g. a depth limit or a maximum number of states,
and it is independent of the system under consideration. On
the other hand, a random walk may get “trapped” at certain
part of the component under test [12]. Our algorithm
is designed to “jump” out of the “trap” and pursue the
exploration further. to build at each step a partial accessi-
bility graph to avoid the state-number explosion problem
mentioned before. The algorithm finally produces a test
sequence as a transition tour of the component in its context.

Initial condition. The environment machine� is in an ini-
tial state
���

�
, the component machine under test� is in an

initial state
���
�

, and the system variables have initial values
�����.
Termination. The algorithm terminates when all the tran-
sitions of� have been marked off.
Execution.

1. HIT From the current node�
���
�
� 


���
�
� ������ conduct a

search in� �� until (a) or (b) occurs:

(a) Reach an edge which is associated with un-
marked transitions of the component machine�:
a Hit. Then:

i. Include the path from the current node to the
edge (inclusive) in the test sequence under
construction;

ii. Mark off the newly exercised transitions
of �;

iii. Arrive at a node�
�����
�

� 

�����
�

� ��������;

iv. Erase the searched graph;

v. Repeat from 1.

(b) Reach a search depth or space limit without hit-
ting any unmarked transition of�. Then move
to 2.

2. JUMP

(a) We have constructed a search tree, rooted at
�


���
�
� 


���
�
� ������.



(b) Examine all the leaf nodes of the tree, and select
one uniformly at random.

(c) Include the path from the root to the selected leaf
node in the test sequence.

(d) We arrive at the selected leaf node
�


�����
�

� 

�����
�

� ��������: a Jump.

(e) Repeat from 1.

This algorithm avoids looping on the same state, as far
as we choose uniformly and randomly in the spanning tree.
Notice that Hit-or-Jump assumes that the specification is
correct in the sense that it does not imply run-time dead-
locks, non accessible states, etc.

3 A case study: A Conference Call Service

The conference call service is specified by means of the
SDL language, as we mentioned in the previous section.
This service allows a given set of users to establish a mutual
communication. A subscriber, initiator of the communica-
tion, plays a special role: the moderator. He has in charge
the conference-bridge reservation for a given hour and a
given day. The conference cannot start before the arriving
of the moderator.

This specification lies upon an Intelligent Network (IN)
architecture and on the concept of reusable components, the
Service Independent Building Blocks(SIBs). The Q.1201
recommendation defines the conceptual model of the IN.
This model is divided in four plans, each plan being an ab-
stract view of the system. The specification we considered
stresses more the global functional plan, which is responsi-
ble for the service creation, and put the accent also on the
service plan itself. We are here particularly interested in
the user’s view of the network and the services. This plan
models the network as a unique entity, which executes the
service.

In the system architecture described in figure 1 we find
three main blocks: (1) theUsersblock, which consists of
three processes:users, the conferenceand term_manager
(2) the SSP block (3) the SCF block. Theusersprocess (the
sole process that interacts with the environment) models the
user’s behaviour (to off-hook, to on-hook, to dial, to hear
the busy-tone and the ring-back, to speak) which is finely
defined. Theterm_managerprocess manages the SDL data
of the block, and copes with other process creations. The
SSP block is responsible for the switching function; it is di-
vided into four processes: theobcsmprocess for handling
the originating half calls, thetbcsmprocess for the terminat-
ing half calls, the CCF process and lastly the SSF process.
The CCF process establishes, handles and releases the calls.
The SSF makes the connection, by association with CCF,
between a user and the Service Control Function (SCF).

OBCSM TBCSM

INAP

Users

term_manager

 

CCF SSF

 conference

SCF

SIBs

SSP

Terminal/Users

Figure 1. Architecture of the specification

The network communications, linked to the INAP proto-
col, are shortly considered here (only a few primitives are
specified). In this specification the accent is put on the mod-
ular aspect of the service design, and on its SIB decompo-
sition. A SIB is a piece of logic (or building block) which
comprehends instantiation parameters as input, and returns
a result.

3.1 Test generation for the service components

A SIB is a monolithic, reusable and standard component,
used for building services. The SIBs take as input some
static parameters called SSD (Service Support Data) and
CID (Call Instance Data); it can be activated at an activation
point POI (Point of Initiation) and may have one or more
terminations POR (Point of Return).

The SIBs of the intelligent network are designed in an
interprocedural way. Each component is mapped to a SDL
procedure. Hence, in order to supply the service, a process
is used, which has in charge the chaining of the building
blocks (this chaining is sequential). This process plays the
role of glue between the components.

The results obtained
The conference call service is supplied by a specific

chaining of building blocks. The different components are
generic, each of them models a function. With the aim of
building up an executable service logic, they have to be in-
stantiated by some parameters. These latter allow the defi-
nition of different behaviour of the same component, which
are the following:



� DCL supplies the call triggering;

� EDA allows the call establishing;

� MVl_ann issues the play announcements to the users;

� MVL_exp has in charge the network play announce-
ments;

� RSC_incr, RSC_decr and RSC_obs manage respec-
tively the conference bridgeresource incrementation,
its decrementation and the monitoring.

Figure 2 presents some metrics on the service specifi-
cation under study: number of lines of code, of blocks, of
processes, etc. Figure 3 presents our results: the first col-
umn points the coverage rate of each component and the
second one gives the length of the derived sequence. Note
that the coverages are not always 100% because the compo-
nents are generic and have been instanciated partially (for
this application). The maximum execution time on a Sun
Ultra 5 running SunOS 5.5.1 is 120 seconds.

Lines of SDL code 9.873
Blocks 3
Processes 13
Procedures 49
States 307
Signals 67
Macro definitions 29
Timers 1

Figure 2. The
specification
metrics

DCL 100% 32
EDA 65% 119
MVL_ann 50% 55
MVL_exp 80% 197
RSC_incr 100% 36
RSC_decr 100% 131
RSC_obs 80% 140

Figure 3. Test
components
results

The conference bridge module
We have also applied the algorithm to theconference

bridge module. It seemed to us that it would be wiser to
show the sequence computed for this module, as far as it
allows a better understanding of a conference bridge — the
sequence for the components being less clear. We got a se-
quence of length 247, expressed in the MSC [10] format
and in the TTCN [8] notation.

Figure 4 is the simplified MSC for the test sequence ob-
tained for the module representing the bridge-conference
terminal. This sequence brings to light all the interactions
of this module (it indeed covers all the transitions). We only
show here the signal exchanges between the two peers, i.e.
the switch (SSF) and the user, with which the bridge inter-
acts. The environment here is schematized by the frame of
the figure. The scenarios that can be found in the signal
exchanges of the figure 4 are the following:

The user 2 asks for a connection to the conference call by
dialing number08.36.00.00.01. At the conference level,

this is translated into the signal inputsetupreq. The confer-
ence module sends anoffhook signal to the switch. This lat-
ter, after a chaining of exchanges with the PCS and a series
of component activations, sends asetupresp signal which
means that the communication can be established. First, the
user receives a waiting message and, as soon as the com-
munication is established, a welcome message. Once this
latter is received, the user decides to on-hook: this sends
a releaseind signal to the switch; this latter relays it to
the conference module by means of thereleasereq. This
latter module acknowledges the disconnection request by
thereleaseind signal; then it receives aline_free message,
which indicates that the line is free again.

Figure 4. Simplified test sequence of the
conference-bridge module
The second part of the figure brings to the fore the fol-

lowing scenario: the user 1 calls the bridge, he receives
the waiting signal and then the conference is opened; the
waiting subscribers receive the welcome message; conse-
quently the communication is established, they can talk to
each other: this exchange is revealed by the reception of a
msg_term signal.

4 A suitable CORBA test architecture

CORBA is a standard promoted by the OMG consortium
(Object Management Group) which is widely accepted in



the telecommunication industry, and the main actors of this
sector have made large investments in this technology.

The CORBA standard defines a general model for dis-
tributed programming addressing heterogeneity at different
levels (hardware, operating systems, networks and proto-
cols, programming languages). CORBA can be viewed as a
software infrastructure allowing the interconnection of het-
erogeneous pieces of software. CORBA is based on an
object-oriented approach and on the client/server model.

The core level of a CORBA implementation is called
an ORB (Object Request Broker). CORBA objects are de-
scribed in a pivot language called IDL CORBA. This lan-
guage allows communication between different program-
ming languages (for instance C, C++,COBOL, Java,ST80,
...). An IDL CORBA definition describes the interface of a
software and not a complete implementation. The IDL defi-
nitions are stored in an interface repository. This repository
is mainly used to dynamically construct a method invoca-
tion (dynamic invocation interface).

The choice of CORBA as a test environment is moti-
vated by the following reasons: (1) The telecommunica-
tion companies are moving to CORBA; (2) CORBA is a
distributed environment garantying the transparency of re-
source location and communication, despite heterogeneity;
(3) CORBA is well fit for a modular architecture like the
SIB approach of the IN (see section 3).

4.1 Test architecture

Following classical architectures proposed for telecom-
munication protocols, such as those described in the
ISO 9646 normalization, we propose a CORBA test ar-
chitecture based on two types of components (testers and
components under test) [13]. These components can be
distributed on different workstations but we have just one
tester.

The Hit-or-jump algorithm generates test sequences that
are composed by active and passive segments. For the tester
this implies the ability to stimulate the components under
test and to compare the output to the attended result (the
active part) but also the ability to observe the messages ex-
changed between the components under test (the passive
part). Each message is composed by a name, a target ob-
ject and some arguments values.

The tester has two parts (see figure 5). The first one pro-
cesses CORBA messages corresponding to the active part
of the test and the second one is an observer for the pas-
sive part of the test. From a CORBA point of view, the first
part is a generic CORBA client object able to invoke any
operation on any CORBA object. The CORBA naming ser-
vice is used to resolve names used in the test sequences on
CORBA object references (called IOR). The implementa-
tion of this first part uses intensively the dynamic invocation

interface which allows to dynamically construct invocations
using the interface repository. Testers must have a timer to
detect livelocks and locks.

The second part of our tester is more difficult to ad-
dress because we have to observe the invocations exchanged
between the tested objects without modifying their source
code. Moreover, the programming interface of ORBs do
not offer any mechanism to observe the invocations. We
have studied different solutions to this problem:

� Extend an ORB with such capability.This solution is
more powerful because we can add any functionality
we want but is also more difficult to realize. [6] is an
example of this approach.

� Use interceptors.Interceptors are a new functionality
in the CORBA 2.3 standard. Interceptors allow to add
some code during an invocation between a client and
a server. Interceptors seem to be a good solution for
our problem, unfortunately modification of the source
code is necessary;

� Observe the invocations at the transport protocol layer.
CORBA 2 has standardized a communication protocol
called GIOP (Generic Inter Orb Protocol) to allow dif-
ferent ORBs to cooperate in order to transport an invo-
cation message. GIOP allows interoperability between
different ORBs. GIOP can have different incarnations
depending on the transport layer used. IIOP (Internet
Inter Orb Protocol) is the main incarnation of GIOP.
IIOP uses TCP as a transport layer. This solution has
several advantages for us. First it is independent of the
ORB and second it does not imply any modification of
the source code. The main drawback is that IIOP is a
transport layer that ignores the semantic of the trans-
ported data. Another drawback is that IIOP is used for
remote invocations but not for local invocations (many
ORBs do some optimizations in the case of local invo-
cations).

We have chosen the third solution but we have to force
the distribution of the components under test to ensure that
all the invocations will be remote ones. The software archi-
tecture of our tester is described in figure 5.

With the distribution constraint, we have to define a two-
level architecture for our observer. At the first stage we have
one local observer per workstation and at the second stage
a global observer which can be located at any site. Local
observers and the global observer has to cooperate in order
to construct the global history of invocations (this collabo-
ration process is simplified because all the invocations are
synchronous). We have chosen CORBA as the distributed
infrastructure among the observers. The global observer in-
teracts with the tester using a CORBA IDL interface (so
they may be located on different sites). Interactions between



TESTER

M1 M2 M3

Repository

Interface

IDL

Service

Naming

Local Obs. 3Local Obs. 1 Local Obs. 2

Obj. to be tested
Global Obj. Client

Generic

: Two-way Static Invocations
: Two-way Dynamic Invocations

Figure 5. Tester architecture

the global observer and local observers also use a CORBA
IDL interface (in both directions).

A local observer observes the local IIOP traffic and
extracts useful information from the segments (name of
the invoked operation, name of the target CORBA object
and value of the arguments, if any). The problem here
is that IIOP is a transport protocol and that we have to
interpret the content of the segment in order to extract the
information we need. This interpretation process uses the
CORBA naming service to extract the information about
the target object and the interface repository to extract the
information about the invoked operation.

5 Conclusion

In this paper we have presented a global test architec-
ture for distributed services including the generation of test
sequences for service components. Our approach was val-
idated by a case study: a France Telecom conference call
service.

The full service was described using the SDL language,
and the running of the Hit-or-Jump algorithm showed no
deadlocks and produced the test sequences for all the com-
ponents of the studied service.

For sake of simplicity, we have selected a component of
the conference call service that is at the very heart of the
service, the conference bridge, and which coordinates the
other components and illustrates clearly what one imagines
a conference call service is. The other components were
generic components that can be present in other kind of
telecommunication services, and for which we also gener-
ated the corresponding tests. We have produced the tests for
the bridge component in its context, and we translated them
in the TTCN and MSC formats.

We have also defined an architecture for the tester, which
combines an active part (based on a stimulation of the im-
plementation) and a passive one (based on the observation
of the exchanges between the CORBA objects).

The results we got show that the use of formal methods

considerably eases the task of the service designers and de-
velopers, and that they are usable for real services. Since the
design phase to the implementation and test phases, we used
formal description techniques (SDL, TTCN, MSC) and a
formal test methodology. Moreover, we showed it is possi-
ble to test the service components in the context of the oth-
ers (and not artificially in isolation). We think this is a no-
table step towards the validation and the design of reusable
service-components.

References

[1] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.
A guided incremental test case generation procedure for
conformance testing for CEFSM specified protocols. In
IWTCS’98, Tomsk, Russia, Aug. 1998.

[2] CASTOR. Conception d’un Atelier de création de Ser-
vices pour les plateformes Tina, CORBA et RI. Partenaires
Alcatel, France-Telecom-CNET, Verilog, INT. Projet pré-
compétitif RNRT,www-inf.int-evry.fr/~castor.

[3] A. Cavalli, B. Defude, C. Rinderknecht, and F. Zaïdi. Test
de composants de service et exécution de tests sur une plate-
forme CORBA. In P. S. Jean-Pierre Courtiat, Michel Diaz,
editor, CFIP’2000 Ingénierie des protocoles, pages 363–
378, Toulouse, France, Oct. 2000. Hermes.

[4] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaïdi. Hit-or-
Jump: An Algorithm for Embedded Testing with Applica-
tions to IN Services. InProceedings of FORTE/PSTV’99,
Beijing, China, Oct. 1999.

[5] M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two
approaches linking test generation with verification tech-
niques. In A. Cavalli and S. Budkowski, editors,Protocol
Test Systems VII. Chapman & Hall, 1996.

[6] C. Gransart, P. Merle, and J. Geib. Goodewatch: Supervi-
sion of CORBA applications. InProceedings of ECOOP’99
Workshop on Object-Orientation and Operating Systems,
Lisbonne, Portugal, June 1999.

[7] M. Ionescu and A. Cavalli. Test imbriqué du protocole
MAP-GSM. InProceedings of CFIP’99, Nancy, Apr. 1999.

[8] ISO. Information Technology, Open Systems Interconnec-
tion, Conformance Testing Methodology and Framework,
International Standard IS-9646, 1991.

[9] ITU. Recommendation Z.100 : CCITT Specification and
Description Language (SDL), 1992.

[10] ITU-T, Geneva.Recommendation Z. 120 Message Sequence
Charts, (MSC), 1996.

[11] A. Kerbrat, T. Jeron, and R. Groz. Automated test generation
from SDL specifications. In R. Dssouli, G. Bochman, and
Y. Lahav, editors,SDL’99. Elsiever Science, 1999.

[12] D. Lee, K. Sabnani, D. Kristol, and S. Paul. Confor-
mance Testing of Protocols Specified as Communicating Fi-
nite State Machines - A Guided Random Walk Based Ap-
proach. InIEEE Transactions on Communications, volume
44, No.5, May 1996.

[13] L. P. Lima and A. Cavalli. Exécution de tests de services
sur une plate-forme distribuée. InProceedings NOTERE’97,
Pau, France, Nov. 1997.


