January 30, 2026

Exercices

(d’aprés examens des années précédentes)
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Signaux déterministes & temps continu

Exercice 1: distribution de Dirac
1. Pour tout entier n > 1, soit ¢, () = ne=™ ¢
(a) Faire un tracé des fonctions ¢,, et donner la limite de la suite de fonctions (¢, )n>1 (convergence
simple).
(b) Montrer que pour toute fonction f bornée et continue en 0, on a

lim /qun(t)f(t) dt = f(0).

n—-+oo

2. Pour tout entier n > 1, soit ¢y, (t) = nl{_1 /25,1 /20 (t)-
(a) Faire un tracé des fonctions ¢, et donner la limite de la suite de fonctions (¢, )n>1 (convergence
simple).
(b) Montrer que pour toute fonction f continue en 0, on a

lim / bu(t)F () dt = £(0).

n—-+oo
3. Vérifier que les résultats précédents se généralisent en prenant ¢, (t) = nd(nt) dans les cas sui-
vants :
(a) ¢:R — R est intégrable, [, ¢(t) dt =1 et f:R — R est continue et bornée.
(b) ¢:R — R est continue, de support borné, [, #(t) dt =1 et f: R — R est continue.

4. Soit la fonction ¢(t) = %ft que ’on suppose prolongée par continuité en zéro et, pour tout entier

n > 1, soient ¢, (t) = ng(nt). Nous admettrons (cf. cours de maths) :
e (lemme de Riemann-Lebesgue) f: f(t)ei?™t dt — 0 pour toute fonction f intégrable sur
n— 1 oo
[a, b].
. M
o limpy/yioo [7,, 0(t) dt =1

On suppose que f est une fonction de support borné telle qu'on peut 'écrire f(t) = f(0) + tg(t)
pour g intégrable (c’est par exemple le cas si f est contintiment dérivable). Montrer que :

lim / bu(D) () dt = £(0).

n—-+oo

5. Dans tous les cas ci-dessus, on définit §(t) = lim,— o0 ¢n(t) qu’on appellera distribution (ou im-
pulsion) de Dirac. C’est 1a une définition simplifiée et on notera que §(¢) n’est pas une fonction.
La théorie des distributions montre toutefois que §(¢) peut se manipuler comme une fonction. On
résume ci-dessous des éléments essentiels (aucune preuve n’est réellement demandée) :

(a) On peut définir la translatée d(t — 7) = limp o0 ¢n(t — 7). Alors [, 6(u —7)f(u) dt = f(7)
sous les mémes hypothéses que ci-dessus (vérifier qu’on obtient également cette relation par
changement de variable). On admettra cette propriété pour toute fonction continue.

(b) La distribution de Dirac est symétrique 6(¢) = §(—t) (vérifier).

(¢) Finalement, pour toute fonction continue, on la propriété essentielle (noter la convolution) :
[ #ste =) du= 1) = [ )t~ w) d
R R

Réponses exercice: 1
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(a) limp—too dn(t) =0sit# 0 et limp—syoo Pn(0) = co.
(b)
/R on(O)F(t) dt = /R ne~™t (1) dt = /R =™ f(u/n) du

Sous cette derniére forme, les u +— e"““Zf(u/n) convergent simplement vers la fonction u — e_T’“Zf(O) et

sont dominés par la fonction intégrable u +— e—mu? (sup | f]). L’application du théoréme de convergence dominée
donne alors

lim /R n(t)f(8) dt = /R =% £(0) du = £(0)

n— 00

. La continuité de f en zéro entraine qu’elle est bornée dans un voisinage de zéro et donc, pour un N € N choisi assez

grand, f bornée sur [—1/2N,1/2N]. Dés lors, on peut procéder comme précédemment :

1/2
[ a0 dt= [ 0t o @50 dt = [ fuim) du
R R —1/2

La suite de fonctions u — f(u/n) définies sur [—1/2,1/2] converge simplement vers la fonction constante f(0), ces
fonctions sont dominées (& partir de n > N) par une fonction constante (donc intégrable). On peut alors appliquer
le théoréme de convergence dominée.

Une autre possibilité est de constater que les fonctions u +— f(u/n) définies sur [—1/2,1/2] convergent uniformément
vers la fonction constante f(0), ce qui donne le méme résultat par permutation de limite et intégrale.

Méme technique.

Ici, ¢ n’est pas intégrable et la technique précédente ne fonctionne pas. En revanche, en supposant le support de f
inclus dans [—M, M] :

M M sinmn M sinmn
/%(t)f(t) dt = n(t)f(t) dt=/ tf(O) dt+/ tg(t) dt
R M -M

_m 7t ™

Pour n — +o00, le deuxiéme terme tend vers zéro tandis que le premier tend vers f(0), ce qui donne le résultat
souhaité.

Rien & démontrer, voir cours de mathématiques pour des preuves sérieuses.

Exercice 2: inégalité de Heisenberg Dans tout I'exercice, on considére un signal déterministe
x(t) d’énergie finie (¢t € R représente le temps). On supposera que ce signal est dérivable, que /()
est d’énergie finie et que ta(t) est d’énergie finie.

(a) Préciser comment s’énonceraient les hypothéses ci-dessus dans le langage du cours de ma-
thématiques. En admettant qu’elles existent, préciser les limites de t|x(t)|> pour t — +oc et
t — —oo.

(b) On note E, I'énergie du signal x(t). Rappeler la définition de E,.

On définit :

s [ 2@ N / e lz@®)?
to—/Rt g dt et:T2 R(t to) 5

En faisant une analogie avec les probabilités, justifier que ’on puisse dire que tg est le «temps moyen
du signaly. Interpréter T' (appelé parfois «durée quadratique moyennes ).

Dans la suite de ’énoncé, on supposera tg = 0.

On note X (f) la transformée de Fourier de z(t) (f désigne la fréquence) et on fait 'hypothése que
Je FIX(H)P df = 0.

En utilisant la relation de Parseval, donner l'expression de E, en fonction de X (f). Interpréter la
quantité B introduite ci-dessous (et appelée parfois de «bande quadratique moyenne occupéey) :
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Rappeler comment s’écrit la transformée de Fourier de 2’(t) en fonction de X (f) et en déduire :
/ &/ (D)2 dt = 4x* B2E,
R

En appliquant I'inégalité de Schwarz a [ (tx(t))*’(t) dt d’une part, et en calculant cette intégrale
d’autre part, montrer que BT > ﬁ.
Déterminer les signaux & valeurs réelles d’énergie finie pour lesquels le produit BT est minimum.

—xt2 TF,

On rappelle la transformée de Fourier e I e=mf* et on considére le signal particulier x(t) =

e~ Calculer E,, B et T.

Réponses exercice: 2
(a) (t) dérivable et x(t), ’(t), tz(t) appartiennent & LZ(R). En admettant que les limites existent, on constate
alors que limy— 4 oo t|z(t)|? = lim¢— _ oo t|z(¢)|2 = 0.
Remarque : L’existence des limites en question peut se prouver comme suit : soit g(t) = t|x(t)|2. Alors ¢’ (t) =
|z(t)|? + tx’ () (t)* +tz(t)z’ (t)* est dans L' (R) puisque chacun des termes s’écrit comme un produit de deux
fonctions de L2(R). De plus |g(v) — g(u)| = | [ ¢'(t) dt| < [V |g'(t)| dt. ¢’ étant dans L'(R), ce dernier terme
tend vers zéro lorsque u, v tendent vers +o0o et donc g admet une limite en +oo par le critére de Cauchy.
(b) cf. cours.
2
Remarquer que ‘x}(z;)‘ est une densité de probabilité.
©
cf. cours.
z'(t) I i2m fX(f) et donc par la relation de Parseval

/|z'(t)|2 dt =/ li2rfX(f)? df = 4x2B2E,
R R

’ < (/R 2|2 (t)|? dt) (/R |z’ ()] dt) = 4r? B T%(E,)? (1)

s/ _ too / *
/R(tx(t)) &/ (t) dt = [m(t)\?]m - /R(x(t) +ta! (8) () dt
_ 7/H§\x(t)|2 dtf/R(tz’(t))*x(t) dt
=—Fg — (/R(tx(t))*x'(t) dt)
d’ou d’aprés cette derniére égalité :

[ =)= dt‘ > ‘m{ JRCORTE dt}

En réunissant les deux inégalités ci-dessus, il vient (E3)2/4 < 472 B2T?2(E,)? soit encore BT >

/(tz(t))*x'(t) dt
R

En intégrant par parties :

> Ez/2 )

1
4
BT est minimum lorsque ’on a égalité dans ’'inégalité de Cauchy-Schwarz, ce qui indique qu’il existe o € R tel que
—at?

z'(t) = —2atz(t). La résolution de cette équation différentielle donne z(t) = Ce avec C € R et a > 0 puisque

x(t) est d’énergie finie.

En notant y(t) = 6727”2, dont la transformée de Fourier est Y (f) = %e’”ﬂm, ona:

2 1
E :/e*m dt =Y (0) = —
N R V2
—2nt? —2nt? —2nt?
t + 1
T2:/t2e dt = [= ]w+/e dt = —
R Ex —47I'Ex —00 R 47I'Ex 47
et donc
1
N

Le calcul de B = ﬁ se fait de méme. Noter que pour le calcul de B et T, on aurait pu remarquer que B = T et

que le produit BT atteint sa borne inférieure.



January 30, 2026 5

Exercice 3: effet d’une troncature Soit le signal

0 sinon.

(1) = {Acos(waot) si |t] < T/2

. Tracer le signal z(t) (pour T > 1/fo). Est-ce un signal d’énergie finie ? de puissance finie ?
. Calculer la transformée de Fourier de ce signal et tracer son spectre en amplitude.

. Calculer ’énergie ou la puissance du signal pour la valeur particuliére T'= Ty = 1/ fo.

Réponses exercice: 3

. Energie finie, puissance nulle.

. x(t) = Acos(27 fot)L|_1/2,1/2] (), et la transformée de Fourier se calcule donc immédiatement X (f) = AT [sine(n (f+

Jo)T) + sine(r(F ~ fo)T)] :

A%Ty

. Energie = =5

Exercice 4: calcul de transformées de Fourier Cet exercice a pour but de manipuler quelques
transformées de Fourier. Le cadre est implicitement celui des distributions tempérées et aucune
justification théorique n’est demandée. On note dans cet exercice T et L deux réels positifs tels que
L>T>0.

Soit le signal

x<t>={1 i1t <
0 sinon.
et le signal y(t) = >, o, x(t — EL).
1. Tracer l'allure des signaux x(t) et y(t).
Que vaut la transformée de Fourier X (f) du signal x(t) ?
On définit Iz (t) = >,y 0(t—kL). Quel est le nom couramment donné & cette distribution ?

Exprimer y(t) en fonction de x(t) et III;(¢). Préciser en frangais le nom de l'opération mise
en jeu dans la formule donnée.

> o

Déduire de la question précédente la transformée de Fourier Y (f) de y(¢).
Tracer lallure des transformées de Fourier X (f) et Y(f).
Voyez vous une analogie avec un calcul que vous auriez pu déja faire en physique ?

Calculer la série de Fourier associée au signal L-périodique y(t).

© X N>

Moutrer que les coefficients de Fourier précédents ont déja été obtenus lors du calcul de Y (f)
a la question 5.

Réponses exercice: 4

1. Facile.
X(f) = Tsinc(n fT)
1My, () est appelé peigne de Dirac.
y(t) = I () * z(t) ou % désigne la convolution.
Ihmnﬂﬁ:%mgﬂmﬁzim%gwmuﬁﬂ.
A faire. ..

X (f) correspond a la figure de diffraction d’une fente tandis que Y (f) correspond a la figure de diffraction
d’un réseau (avec infinité de fentes).

N o oA e

et+i2mkt/L

8. La série de Fourier associée & y(t) s’écrit y(t) = > pcz y(t) avec :

1 [L/2 ) 1 rT/2 . 1 T T kT
cx = 7/ y(t)e 2Rt/ L gy — 7/ e~ 2mkt/L gy — — gin(nk—) = Z sine o
L —L/2 L —-T/2 7k L L L
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9. D’aprés I'expression de la question 5, en remplagant III; :
T

Y(f) = % ST6(f - %)sinc(WfT) =3 %sincﬂZTé(f - %) =3 ed(f - %)

keZ kEZ kEZ

Exercice 5: signal modulé 4 bande étroite, transformée de Fourier Dans cet exercice,
le cadre est implicitement celui des distributions tempérées et aucune justification théorique n’est
demandée.

. Soit le signal p(t) = cos(27 fot). Quelle est la transformée de Fourier P(f) de p(¢)?

. Soit m(t) un signal & valeurs réelles dont la bande de fréquence occupée est [—B, B] avec B < fo.

On définit z(t) = m(¢)p(t). Calculer la transformée de Fourier X (f) de x(¢) en fonction de M(f),
transformée de Fourier de m(t).

. Repreésenter schématiquement l'allure de X (f) en fonction de celle de M(f) (transformée de Fourier

de m(t)) et préciser la bande occupée par x(t).

. Comment s’appelle Popération qui consiste & transformer m(t) en x(¢) ? Comment appelle-t-on un

signal comme 2(t) dont le spectre occupe une bande B avec B < fo?

. Soit le filtre de réponse en fréquence

2 sif>0,

H“(f):{o si f<0.

On note z,(t) le signal obtenu lors du filtrage de m(t) par H,(f). Comment s’appelle le signal
zm(t) 7 Tracer sommairement son spectre.

. Donner la réponse impulsionnelle h,(t) du filtre de réponse en fréquence H,(f) (calcul non de-

mandé). En déduire que l'on peut écrire z,,(t) = m(t) + im(t) ou m(t) et m(t) sont les parties
réelles et imaginaires de z,,(t). Comment s’appelle le signal m(t) ?

. Soit y(t) = R{zm(t)e?>"Fot}. Tracer I'allure du spectre de y(t) et déduire de ce qui précéde une

expression de y(t) en fonction de m(t) et m(t).

Réponses exercice: 5

P(f) = §(8(f = fo) + 6(f + fo))-

X(f) = M(f)» P(f) = 5(M(f = fo) + M(f + fo)).

Facile, voir cours.

La transformation de m(t) en x(t) s’appelle modulation. Un signal tel que z(t) est dit & bande étroite.
Le signal z,(t) est le signal analytique associé au signal réel m(¢).

ha(t) = 6(¢) +i$ d’ott zm (t) = ha(t) *xm(t) = m(t)+) + im(t), ou m(t) = ﬁ *m(t) est la transformée de Hilbert de
m(t).

y(t) = R{zm (t)e? 0"}
= R{(m(¢t) + +im(t))(cos(27 fot) + isin(27 fot))}
= m(t) cos(2m fot) — m(t) sin(27 fot)

Voir le cours pour ’allure du spectre.

Exercice 6: fonction d’autocorrélation / densité spectrale (énergie) Soit le signal suivant
(A et o sont des constantes positives strictement) :

Ae™® sit >0,
z(t) = .
0 sinon.
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. Montrer que z(t) est un signal d’énergie finie et calculer 'énergie E,.

. Calculer la fonction d’autocorrélation (en énergie) v,(7) et retrouver la valeur de E, a partir de
Y (T).
. Calculer la densité spectrale d’énergie I';.(f) du signal et retrouver la valeur de E,, a partir de T',(f).

. Calculer I'énergie du signal contenue dans la bande de fréquences [—5-, 2-].

Réponses exercice: 6

A2
. Ex:%

A2

e = e

. L’énergie dans la bande [— 2, 2] est E./2.

T 2w 2w

Exercice T: filtrage, égalisation Un signal z(t) est transmis & travers un canal et le signal requ
est y(t) = Ax(t —to) + ax(t —t1), ot a < A et tg < t3.

. Déterminer la fonction de transfert H.(f) de ce canal.

. On désire compenser effet du canal par un filtrage de y(¢) (traitement d’égalisation). Quelle est la
réponse en fréquence H.(f) du filtre (appelé filtre égaliseur) que l'on doit appliquer a y(t) afin de
retrouver Ax(t — to) en sortie de I’égaliseur ?

. En utilisant le fait que a < A et en effectuant un développement limité a l'ordre deux (par rapport
a a/A) de H.(f), montrer que ce filtre égaliseur peut étre approximé par le systéme suivant (figure
1) qui comporte des lignes a retard et des amplificateurs & gain constant. Préciser les valeurs de
AQ,Al,AQ et 1.

y(t) retard T y(t—7) retard 7 y(t —27)
AO Al A2

ley(t) + Ary(t — 1) + Agy(t — 27)

FIGURE 1 — Approximation du filtre égaliseur a ’aide de cellules de gain et de retard

Réponses exercice: 7
. Hc(f) — Aef'lQTrft[) +a67127rft1.

Ae—i27fto

- He(f) = S5~

CHe(f) m 1= Gemi2nf(limto) 4 apemidni(ti=t0) don Ag = 1,41 = —§, Az = S et 7=t — to.

Exercice 8: filtrage Soit 5 > 0 une constante et le filtre défini par sa réponse impulsionnelle

5(t) — pe Bt sit >0,

ht) = (1)~ B~ "1, (1) = { 0 it<0
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. Le filtre est-il causal ? Justifier.
. Le filtre est-il stable ? Justifier.

. Exprimer la réponse en fréquence H(f) de ce filtre. Est-ce un passe-haut, passe-bas, passe-bande
ou coupe-bande ?

. On définit un filtre complémentaire par sa réponse en fréquence G(f) = 1— H(f). Donner la réponse
impulsionnelle g(t) correspondante.

. Soit x(t) un signal de densité spectrale de puissance T',,(f) et qui attaque en entrée les filtres H(f)
et G(f). On note y(t) et z(t) les sorties correspondantes.

a(t)

Calculer la densité spectrale de y(t) + z(t) en fonction de T',.(f).
. Calculer la densité spectrale de y(t) — z(t) en fonction de T',.(f).

Réponses exercice: 8

. Le filtre est causal puisque pour ¢ < 0, on a h(t) = 0.

. Oui, le filtre est stable au sens entrée bornée-sortie bornée.

B _i2nf
B+ienf  p+ienf
On constate |H(f)| <1, |[H(f)| f—> 1et |H(f)] ﬁ 0. Il s’agit donc d’un filtre globalement passe-haut.
— 00 —

H(f) = TR{h(t)} =1 —

- g(t) = TF~HG(f)} = 8(t) — h(t) = fe~PMlg, (1)

. y(t) + z(t) provient du filtrage de z(t) par le filtre de réponse en fréquence H(f) 4+ G(f). La densité spectrale est
donc : Ty (f) = [H(f) + G(N)PT=(f) = Ta(f).

. y(t) — z(t) provient du filtrage de z(t) par le filtre de réponse en fréquence H(f) — G(f). La densité spectrale est
donc :

Ty—=(f) = [H(f) = GUN)PTa(f) = [2H(f) — 1°Ta ()

2

B i2r f 2 | =B +iznf
= m*l Ix(f) = Branf Iz (f)
:Fx(f)

Remarque : Ces deux fonctions de transfert sont souvent utilisées pour des filtres d’aiguillage dans les enceintes
acoustiques. H(f) alimente le «tweeter» tandis que G(f) alimente le «boomer». Les égalités I'yy.(f) = Ty—_.(f) =
T'2(f) indiquent que le spectre en sortie de I’enceinte est théoriquement fidéle au spectre en sortie de I’amplificateur
de puissance et ce, méme si ’on se trompe sur la polarité de branchement d’une des enceintes.
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Echantillonnage

Exercice 9: échantillonnage idéal/non idéal suiveur/non idéal bloqueur Dans cet exer-
cice, les signaux sont implicitement considérés comme appartenant a I’ensemble des distributions
tempérées. On note 6(t — a) la distribution de Dirac centrée en a et Iy (t) = 5, 6(t —nT) le
peigne de Dirac de période T

Soit un signal a temps continu z(t) de transformée de Fourier notée X (f).

nez

. On définit le signal x.(t) = x(t) 7 (¢).

(a) Montrer que z.(t) ne dépend que de 'ensemble des valeurs (z(nT)),ecz du signal z(t). Quelle
nom est donné a 'opération modélisée par la multiplication par le peigne de Dirac ?

(b) Calculer X.(f) la transformée de Fourier de z.(t) (en fonction de X (f))?

(c) Dans le cas on z(t) est a bande limitée [—B, B], tracer lallure schématique des spectres de
x(t) et ze(t).

On considére maintenant un échantillonnage non idéal du signal x(¢). On introduit pour cela la
fonction porte Ig(¢) = 151 0 < ¢ < 6 et 0 sinon. On suppose de plus 6§ < T

(a) Soit le signal z4(t) = x(¢) <Z Iy (t — nT)) Justifier par un dessin que ce signal puisse
neL
modeéliser un échantillonneur-suiveur (non idéal).

(b) Exprimer ), Tlg(t — nT’) comme un produit de convolution avec le peigne de Dirac, puis
calculer sa transformée de Fourier.
(¢) En déduire la transformée de Fourier X;(f) de zs(t). Commenter et conclure.

. On considére un autre modéle d’échantillonnage non idéal en conservant les notations de la ques-

tion 2.

(a) Soit le signal z(t) = Z x(nT)g(t—nT). Justifier par un dessin que ce signal puisse modéliser
nez
un échantillonneur-bloqueur (non idéal).

(b) Ecrire x(t) comme une convolution avec Iy(¢).

(¢) En déduire la transformée de Fourier X;(f) de zp(t). Comparer aux résultats précédents et
commenter.

Réponses exercice: 9

. On définit le signal z¢(t) = z(¢)Ir(¢).

(a) Voir cours.
(b) Voir cours.
(¢) Voir cours.

(a) Dessin a faire.
(b)
%Hg(t = nT) = g () » Ui (£) =5 b~ ™ sinc(mf0). 111y (f) = % %e-'”?@smc(w%e)a(f - )

7] i mg . n n 7] i mg . n n
Xo(F) =X(f)* de ‘”Tesmc(ﬂ?@)(g(f - =7 e ‘"Tesmc(ﬂf@)X(f - )
nez nez
Par rapport a la formule du spectre obtenu dans le cas d’un échantillonnage idéal, chaque motif de spectre périodisé
dans ’échantillonnage idéal est ici affecté d’un facteur identique pour n fixé. Un filtrage passe-bas permet donc de
reconstituer le signal initial.

(a) Dessin a faire.
(b) @y(t) = L (t) % X a(nT)S(E — T) = () % e(t)
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(¢) Xu(f) = Ge_i"fesinc(wa)Xe(f) = %cj_i”fg.si'nc(ﬂfe) Sonez X(f = ) I._Ja VeI’SiOI.l périodisée du spectre ob-
tenue suite a un échantillonnage parfait est ici affectée d’un facteur en sinus cardinal, non constant pour un
motif (n fixé). Une reconstruction par filtrage passe-bas sera nécessairement sujette a distorsion, d’autant plus
faible que 0 est petit.

Exercice 10: formule d’interpolation Dans cet exercice, on suppose T > 0 fixé.

. Soit, pour tout n € Z, s, le signal d’énergie finie (s, € L?(R)) défini par sa transformée de Fourier
S, qui s’écrit :

VTe 2Tl i f € [~1/2T,1/2T]

0 sinon.

Sn(f) :{

Calculer I'expression temporelle du signal s,,.

. On définit dans I'espace des signaux d’énergie finie (L?(R)) le produit scalaire :

(29} & / £(t)y(t)” dt

Montrer que la famille (s, ),z est une famille orthonormée dans ’espace des signaux d’énergie finie
et & bande limitée [—1/2T,1/2T).

. Soit x un signal d’énergie finie et de bande limitée [—1/27,1/2T]. On note X la transformée de
Fourier de x. On définit une version périodisée de X par :

vfel-1/2T,1/2T)  X(f) = X(f)_
VfeR X(f+7)=X(f)
(a) Calculer le développement en série de Fourier de X. On rappelle que dans le cas présent, il
s’exprime sous la forme :

=T X(f)e— 2T gf

L
2T

X(f) = Z cne'?™ T avec pour tout n € Z : ¢, =T
nez

(b) En déduire la relation suivante, appelée formule d’interpolation de Shannon :
) w(t —nT)
) = E T Al
x(t) nez:c(n )sinc ( T >

A partir des questions 2 et 3b on obtient que la famille (s,,),cz est une base orthonormeée des
signaux d’énergie finie et de bande limitée [—1/2T,1/2T).

. Commenter le fait que 'on ait obtenu une formule d’interpolation exacte. Est-ce cohérent avec le
«sens physiquey 7

Réponses exercice: 10

sn(t) = %sinc (M)

. Utiliser la relation de Parseval.

(a) Pour tout n € Z, ¢, = Tz(—nT) et donc :

X(f) = Z Tx(nT)e 2 fT

ne”Z

(égalité valable au sens de la norme quadratique dans L2(—1/2T,1/2T)).
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(b) En notant 1Ty la fonction qui vaut 1 sur [—1/2T,1/2T] et 0 ailleurs, on remarque que X (f) = X (f)II1 (f) et
T

%IH

on a donc ’égalité suivante, valable au sens de la norme quadratique dans L2(R) :
X(f) =Y Ta(nT)e™ 2T, (f) = > VTa(nT)Sn(f)
T
nez nez

La formule d’interpolation en découle immédiatement en prenant la transformée de Fourier inverse (noter que
cette égalité a ici été démontrée au sens de la norme quadratique de L?(R) et a utilisé la continuité de la TF
dans L%(R)).

Exercice 11: équivalence filtrage analogique/numérique On considére h,(t) et z,(t), deux
signaux analogiques déterministes continus, a bande limitée [—B, B] et tels que [ |h,(t)|dt < oo et
[ za(t)]dt < .

Le but de I’exercice est de démontrer une équivalence entre filtrage analogique et numérique.
Ceci est représenté par les deux schémas de la figure 2, sur lequel on souhaite obtenir le lien entre

ya(QB) et Yn-

n_

Tq(t Yo (t) ya(gB)

ha(t)

2o (1) Tn éxa(%)

r
° B 2 (g pn =L 2

L
2B

FIGURE 2 — Filtrage analogique avant échantillonnage / Filtrage numérique aprés échantillonnage

1. Le filtre de réponse impulsionnelle h,(t) est-il stable ?

2. Soit y, () le résultat du filtrage de x4(t) par le filtre de réponse impulsionnelle h,(2).

(a) Comment s’écrit y,(t) sous forme d’une intégrale ?
(b) On note X,(f), Ya(f) et Ho(f) les transformées de Fourier temps continu respectives des
signaux x4(t), ya(t) et ho(t) (la lettre f représente la fréquence). Quel est le lien entre X, (f),

Ya(f) et Hao(f)?
(¢) En déduire :

yalt) = / I, () Xa(f) df

—-B

3. On forme par échantillonnage les signaux z,, £ ra(55) et hn = ha(55). On suppose aussi pour des
raisons techniques > |z, | < co et Y |h,| < 0o. La condition d’échantillonnage de Shannon-Nyquist
est-elle vérifiée 7

4. y, est le résultat du filtrage numérique de x,, par le filtre de réponse impulsionnelle h,,.

(a) Comment s’écrit y,, sous forme d’une somme ?

(b) On note X (f ), Y ( f) et H(f) les transformées de Fourier temps discret respectives des signaux
T, Yn €t by (f représente la fréquence normalisée). Quel est le lien entre X (f), Y (f) et H(f)?

(¢) En déduire que :
b
w= [ X df
—3
5. On admet pour les signaux x,(t) et ho(t) que la formule sommatoire de Poisson est vérifiée :

ZX (f—2Bk) QBZ ( )—wk% et : ZH (f—2Bk) QBZ ( )—ﬁk%

kEZ keZ
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(a) Rappeler la définition de X(f) et en déduire que I'on a pour f €]l— %, %[ : X(f) = 2BXa(2Bf).

Quelle relation a-t-on entre H(f) et Hy(f)?
(b) En déduire y, = 2By.(55) et la relation :

n 1 k n—k
v (35) o 2 (ﬁ) f”( 55 >

Réponses ezxercice: 11

1. Oui.

2. (a) yat) = [y ha(@)za(t — 0)do.
(b) Ya(f) = Ha(f)Xa(f)~
(c)

. . B .
yalt) = /R 2T, (f) df = /R I ()Xo (f) df = A ()X df

L’égalité est vraie pour tout ¢ € R compte tenu des hypothéses (continuité et stabilité des signaux).

3. Oui, la condition d’échantillonnage de Shannon-Nyquist est vérifiée.

4. (a) yn ~: ZkeZ~th"~*k
(b) Y(f) =H(HX(f)

(¢) Formule de transformée de Fourier inverse

5. (a)
k

X(H 2> ape 2 =3 g, (E) e = 2B 3" X, (2Bf — 2Bk)

kEZ kez kezZ
Pour f €] — %, %[, la derniére expression vaut 2BX, (QBf) compte tenu du support de Xq(f). Idem H(f) =
2BH,(2Bf).

(b) 1
v =87 [

1
2

2 7 ~ ~ ~ B o n
2 (2B Xo@BPAf =28 [ 2 (D Xa () & = 2800 (5

Exercice 12: échantillonnage de ’enveloppe complexe

1. On considére un signal analogique x(t) & bande limitée qui occupe une bande [—B, BJ.
(a) Quelle est la fréquence minimale & laquelle il est possible d’échantillonner x(t) sans perte
d’information ?
(b) On construit le signal y(t) = x(t) cos(27 fot) on fo est une fréquence fixée et grande par rapport
a B.
Calculer la transformée de Fourier Y (f) de y(t) en fonction de X (f), tranformée de Fourier
de z(t) (on suppose qu'il n’y a pas de probléme d’existence). Représenter schématiquement
Y(f) et X(f).
(¢) Quelle est la bande [—C, C] occupée par y(¢) ? Si on applique directement le théoréme d’échan-
tillonnage de Shannon-Nyquist, quelle est la fréquence minimale d’échantillonnage de y(t) ?
Ce résultat vous inspire-t-il un commentaire en comparaison du résultat de la question la?
Nous allons maintenant montrer comment il est possible d’échantillonnner un signal bande étroite
a une fréquence inférieure a la fréquence de Shannon-Nyquist.

2. On considére un signal s(t) & valeurs réelles et & bande étroite. On note fy la fréquence centrale
de s(t); [fo — B, fo + B] désigne la bande des fréquences positives occupés par s(t) (fo grand par
rapport & B).

(a) Tracer schématiquement le spectre de s(t) en faisant apparaitre les fréquences positives et
négatives.

(b) Rappeler la définition de z4(t), signal analytique associé a s(t). Tracer schématiquement son
spectre.
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(c) Rappeler la définition de &4(t), enveloppe complexe associée & s(t). Tracer schématiquement
son spectre.

(a) Quelle est la bande occupée par &,(t) ? En déduire la fréquence minimale & laquelle on peut
échantillonner &,(t) sans perdre d’information.

(b) Expliquer briévement comment & partir d’échantillons de £,(t) prélevés a la fréquence 2B, on
peut reconstituer s(t). Conclure.

Réponses exercice: 12
(a) Fréquence minimale d’échantillonnage de z(t) : éx) =2B.
(b) Y(f) = 5(X(f = fo) + X(f + fo))-
(¢) C = fo + B. Fréquence minimale d’échantillonnage de y(t) : éy) = 2C = 2(fo + B). Il est surprenant que

féy) >> féx) alors que les deux signaux z(t) et y(t) contiennent la méme information.

(b) Voir cours.
(¢) Voir cours.

(a) Bande occupée par &s(t) : [—B, B]. Fréquence minimale d’échantillonnage de &5(t) : fég) = 2B.

(b) A partir d’échantillons £s(k/2B), k € Z on peut théoriquement reconstruire £;(¢),¢t € R (d’aprés th. d’échan-
tillonnage) et alors s(t) = R[¢s(t)e!?™f0!]. 11 est donc possible de reconstruire un signal réel et bande étroite
(largeur de bande 2B) a partir des échantillons de son enveloppe complexe prélevés a une fréquence 2B trés
inférieure & la fréquence de Shannon-Nyquist.

Exercice 13: décimation, interpolation Soit s(t) un signal & bande limitée [— B, B] dont I'allure
du spectre est représentée schématiquement sur la figure 3.

1S(fr)l

fr (fréquence, non normalisée)

2B

FIGURE 3 — Spectre schématique du signal s(t)

. On définit les signaux a temps discret :

Vn : xn:s(%) zn:s(%)

Comment s’appelle 'opération qui consiste a recueillir les signaux ci-dessus a partir de s(t)? La
condition du théoréme de Shannon-Nyquist est-t-elle vérifiée pour z,, ? pour z, ?

. Tracer l'allure schématique des spectres des signaux a temps discret x,, et z, (on tracera l’allure

des transformées de Fourier a temps discret respectives X (f) et Z(f) sur 'intervalle de fréquences
normalisées [0, 1]).

. On définit le signal & temps discret y,, par :

Si n est pair (n = 2p), Yop = Tp
Sin est impair (n =2p+1), yopt1 =0

Calculer la transformée en z de y,, (notée Y[z]) en fonction de celle de x,, (notée X|[z]).

. Quel est le lien entre Y[z] et la transformée de Fourier a temps discret de y,, (notée Y (f))? En

déduire un lien entre Y(f) et X (f). Représenter alors allure de Y'(f) sur I'intervalle de fréquences
normalisées [0, 1].
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5. Montrer que par un filtrage passe-bas numérique de y,,, il est possible de retrouver z,.

6. On souhaite obtenir la formule correspondant & I'interpolation précédemment décrite en fréquence.

(a) Considérer Z(f) sur lintervalle [—1/4,1/4], décomposer cette fonction en série de Fourier sur

cet intervalle et montrer que cette décomposition s’écrit :

) = Z 229pe HTPS (sur lintervalle [—1/4,1/4])
pEL
Rappel : Pour une fonction g périodique de période a, on rappelle qu’une écriture de la décomposition en série
) 1 [e/2 .

de Fourier est donnée par g(z) = Z ckef‘%kz/a avec ¢, = —/ g(x)e+‘2”kz/a dx.
a

kez —a/2

(b) Exprimer z, en fonction de Z(f) puis en déduire la relation suivante qui exprime z, en fonction
des échantillons pairs :
-y ( m(n — 217))
Zopsine 5

(¢) En déduire z, en fonction des .
Réponses exercice: 13

1. 1l s’agit d’un échantillonnage. Les conditions du théoréme de Shannon-Nyquist sont vérifiées pour z, et pour zn.
Pour z,, la fréquence d’échantillonnage est la valeur minimale limite fournie par le théoréme d’échantillonnage.

Xl 1Z()

3. Y[z = X[22. © i)l 0 !

4 Y() = X(f). | i

5. On constate (graphiquement) Qlue le filtrage passelbas numérique du motif qui représente Y (f) donne le motif qui
représente Z(f).

6. (a) Sur lintervalle [—%, i], Z(f) peut se décomposer :
Z(f) = cpe” Pt (3)
PEZL
ou, compte tenu du support de Z(f) :
1/4 ) 1/2 )
=2 et g =2 [T 2(etie df = 22, @
—1/4 —1/2

D’ou le résultat.

(b) En tenant & nouveau compte du support de Z(f) :
1/2
= [ 2D = / (Pt df (5)

En remplagant Z(f) par ’expression trouvée sur cet intervalle :

1/4 . . 1/4 X X
Zn = / Z 2Z2p67147rpf e+127rnf df _ Z 2Z2p/ 67147-rpfe+127-rnf df (6)

-1/4 \ ;27 vz —1/4
En poursuivant le calcul, il vient le résultat demandé :

n—2
=Y n( . p’)

pEL
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c) On a z2, = xp pour tout entier p et donc d’aprés la question précédente :
P j2

zn =Y apsinc (@)

pEL

Remarque : L’éléve soucieux de rigueur pourra supposer que z, est sommable et donc dans £2. Dés lors, (3) est vraie
dans L2(7i7 i) (et non pas pour tout f). (5) exprime alors que compte tenu du support de Z(f) dans L2(7%7 %),
on a ’égalité des deux produits scalaires :

<67127‘rnf7 Z(f))Lz(_%’%) = <e*127rnf7 Z(f))LZ(_%’%)

Ceci justifie la permutation de la somme et de l'intégrale dans (6).
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Signaux déterministes a temps discret

Exercice 14: transformée en z

Transformée en z (et domaine de définition) de :

B :
r sin >0,
J— n: -
Ty = .
0 sinon.

ou g e C.

Transformée en z (et domaine de définition) de :

na™ sin >0,
Yn = .
0 sinon.

ol o € C*.

Les signaux x,, et y, sont délivrés chacun a une période T par deux sources avec un retard 7'/2 entre
les deux. On construit le signal multiplexé s, en prenant : so = xg,S1 = Yo, 52 = 1,53 = Y1, - -
Transformée en z de s, 7

Réponses exercice: 14

. X[2] = /% sur le domaine de définition C*.

Y[z] = %m sur le domaine de définition |z| > |a.

On peut en effet utiliser la régle de d’Alembert du calcul du rayon de convergence (en définissant u, = n($)", on a
limy,—s 4 0o u"’zl = Z et donc 3>, gun =3,50n(F)" converge pour |a/z| < 1). On se rappelle d’autre part que :
Viz| < 1, Z " = T ! - et en dérivant : Z nz" ! = ﬁ

n>0 n>1
On trouve Y[z] = ano n(a/z)" = % 2721 n(%)"*1 = %m

. S[z] = X[2?] + 2~ 'Y[2?] sur le domaine ot 22 appartient au domaine de X|[z] et Y[2].

Exercice 15: inversion de la transformée en z Calculer les signaux & temps discret dont la
transformée en z a pour expression :

z

AN CEV CREE

Réponses exercice: 15 X[z] admet trois domaines de convergence possible qui sont D1 = {z € C|0 < |2| < 1},
Dy ={z€Cll<|z|<2}et D3={2€C|2<|z|}.
1

On notera la décomposition en éléments simples X[z] = = + ;—_12 + ﬁ et les développements en série :

[eS) 0

1 70,71 0
V‘Z‘ < |a‘7 —  =—qa! Zaszk = ! Z a2z " = Z gl
- k=0

a 1—alz
n=-—oo n=—oo

1 z=1 >

oo
- :Z—l 2 :akz—k _ 2 :an—lz—n
k=0 n=1

—a 1—az—

vz > |al,



January 30, 2026 17

Et par dérivation, puisque

z—a

ﬁ:%[fl],ﬂvient:

0 0 1
1 d 1 — 1 _ _9 _
V|z| < lal, G—a2 = E a" Tl = E —na" "1z = E —(p—1)aP™2z7P

n=-—oo n=-—oo p=—o00

Il
\
—~
S
\
—
=
N
3
|
N
83
|
3

1 d =
vl|z| > |al, i [ Z a1 —n:l Z a1y (1) = _ Z —(p—1)aP~2P

p=2

D’ou ’on tire :

1 91:—00 —z7" siz| <1,
=30z si |z > 1.
-1 { 2:7002"*12:*" si|z] < 2,

oo —2nTlTr ki) > 2

—3°  —(n—1)2" "1z siz] > 2.

n=1

2 _ { S0 —(n—1)2nlm sifz <2,

On en déduit :

Vz,|z| <1 Xz]

0 0
Z —z "+ Z on—ly,—n 4 Z f(n71)2"71z7"
n=-—oo n=-—oo

n=-—oo
0

o (14 @=-np2n )

Vz,1 < |z| <2 X]z]

_n+22nl—n+z 1z_n

Il

M= -
o

—~

2—n)2" "t 4 Z 27"
n=-—o00 n=1

oo

—n+z _ogn—1 —nizi(n71)2n—lz—n

n=1 n=1

> (A4 (n—2)2n 1)z

n=1

vt

Vz,2 < |z| X|[z]

8

On lit alors immédiatement :

— Si le domaine de convergence est D1 = {z € C|0 < |2| < 1},
D R —n)2n~t n <0,
R n > 0.
— Si le domaine de convergence est Do = {z € C|1 < |z| < 2},
(2-n)2""1 n<o,
Ty =
" 1 n > 0.
— Si le domaine de convergence est D3 = {z € C|2 < |z|},
0 n<o,
Ty =
" 14+ (n—-2)2""1 n>o0.

Ces résultats peuvent se retrouver a l’aide de la formule d’inversion de la transformée en z en calculant des

intégrales par le théoréme des résidus. *** A raAIRE UN JOUR ***

Exercice 16: transformée en z, filtre & temps discret Soit un filtre de réponse impulsionnelle :

0 sin <0,

=) @) sinzo
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1. En justifiant uniquement a partir de cette réponse impulsionnelle :

(a) Que peut-on dire de la causalité du filtre ?
(b) Que peut-on dire de la stabilité du filtre ?

2. (a) Calculer H|[z], fonction de transfert en z du filtre de réponse impulsionnelle h,,. Préciser le
domaine de convergence considéré pour la transformée en z.
(b) Préciser comment se retrouvent la stabilité (ou non) et la causalité (ou non) a partir du
domaine de convergence.
(¢) Trouver la relation de récurrence entrée-sortie du filtre H|[z].

3. (a) Sur quel autre domaine 'expression trouvée pour H[z] converge-t-elle 7 Ce domaine correspond-
il & un filtre stable ? causal ?
(b) On note uy, le signal & temps discret dont la transformée en z (notée U|z]) a la méme expression
que H|[z], mais le domaine de convergence est le deuxiéme domaine évoqué a la question
précédente. Calculer les u,,.

Réponses exercice: 16

1. (a) Causal car hy, =0 pour n < 0.
(b) Instable car h, diverge (réponse a une impulsion de Dirac, bornée).
. N — n o _
2. (a) Sur le domaine |z| > % (cad |%z I < 1), H[z] = ano (%) P I_%ﬁ
(b) Causal car convergence sur le complémentaire d’un disque, instable car le cercle unité n’appartient pas au
domaine de convergence.

(¢) En notant y, la sortie et z,, l'entrée, yn = zn + %ynfl.

3. (a) Sur le domaine |z|] < 5 (cad |%z| < 1), domaine correspondant & un filtre stable non causal.

3
2
(b) Sur le domaine |z| < 2

29

1 —1 1 -1 2 n 2 n+1 9\ "

= = = = +1_ _

U[Z]_l_%zfl_ 3,-171_2,  3,-1 4 (gz) _72(5) o1 _,Z(g) L
n>0

n<1

w

N
w
N

d’out

Exercice 17: transformée en z, filtre & temps discret

1. Soit le signal a temps discret (2, )nez défini par :

27" sin >0,

:C:
" 0 sin<0.

Calculer la transformée en z du signal (z,,)nez. Quel est le domaine de convergence correspondant ?

2. Le signal (2, )nez est appliqué a Uentrée du filtre stable et causal défini par la fonction de transfert

en z:
1

T 1-4

On note (yn)nez la sortie correspondante du filtre.

Justifier I'existence d’un filtre stable et causal défini par cette fonction de transfert. Donner la
relation de récurrence entrée-sortie qui correspond a H|z].

3. Donner la relation entre les transformées en z X|[z] et Y[z] de (zn)nez €t (Yn)nez respectivement
et le domaine sur lequel cette relation est valable. En déduire la séquence (yn)nez-

Réponses exercice: 17
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1. Sur le domaine de convergence |z| > 1/2,
2z

Xll= 5=

2. Unique pole de H[z] en 1/4, de module < 1. D’ou 'existence d’un filtre stable et causal de fonction de transfert H|[z].
Relation de récurrence : pour tout n € Z, y, = i(yn_l — ZTp—1).

3. Sur le domaine |z| > 1/2, on a Y[z] = H[z2]X[z] et on obtient aprés décomposition en éléments simples :

1 1

Y[z] = -
4z — 1 2z —1

Un développement en série sur le domaine considéré donne y, =477 — 27" sin >0et y, =0sin <O0.

Exercice 18: tranformée en z, filtre a temps discret

—

Soit le filtre & temps discret suivant, causal et défini par la relation de récurrence entre son entrée
(Zn)nez et sa sortie (Yn)nez :

1
VneZ Yn = iynfl +

(a) Quelle est la fonction de transfert en z H[z] de ce filtre et le domaine de convergence corres-
pondant ?

(b) Ce filtre est-il stable ? Justifier.

(c) Le filtre est-il de réponse impulsionnelle finie ou infinie ? Calculer cette réponse impulsionnelle.

2. Ce filtre est attaqué en entrée par le signal (x,,)nez défini par :

3= gip>1,

[L‘:
" 0 sin <0.

(a) Calculer la transformée en z X|[z] du signal (z,,)nez. Quelle est la transformée en z Y[z] du
signal de sortie (yn)nez ?

(b) Calculer la sortie (yn)nez.

Réponses exercice: 18
1. (a) Sur le domaine de convergence |z| > 1/2,

1

Hz] = m

(b) Filtre stable car unique pole en 1/2 et le domaine de convergence contient donc le cercle unité.
(¢) Réponse impulsionnelle infinie : hp, =27 sin >0 et hp, =0sin < 0.

2. (a)

271 271

Ve = iy e

ey

(b) En développant Y [z] sur le domaine |z| > 1/2, yn, = 3/2""! —2/3""1 sin > 1 et y, = 0 sinon.

Exercice 19: filtre a temps discret On s’intéresse a un filtrage & temps discret dont le schéma
ci-dessous donne les notations :

(an)nEZ (bn)nEZ

—(h) [ Hz] f——
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La réponse impulsionnelle est donnée par :

1 sin =0,
hn=1¢1/2 sin=1,
0 sinon.

Uniquement a partir de la réponse impulsionnelle, dire (en justifiant) si le filtre précédent est :

— stable?
— causal ?

Exprimer & un instant n donné la sortie (b, )nez du filtre ci-dessus en fonction de Uentrée (ay)nez.
Quel(s) nom(s) donne-t-on a un filtre ayant un relation entrée-sortie de ce type ?

Déterminer la fonction de transfert en z ainsi que la réponse en fréquence H(f) de ce méme filtre.

Calculer |H(f)|? et tracer son allure en fonction de f. En déduire si le type de filtre (passe-haut,
passe-bas, passe-bande, coupe-bande).

On s’intéresse maintenant au filtre inverse du filtre précédent :

bn ne Qn )ne
Gz ) ) Gt nne

Pour le filtre G|z] ci-dessus, exprimer la relation de récurrence donnat la sortie a, & un instant n
donné en fonction de ’entrée b,, et d’autres valeurs de la sortie. Calculer la fonction de transfert

G[z].

Préciser le domaine de convergence de G|[z] en indiquant la causalité (ou non). En déduire la stabilité
(ou non) du filtre G[z]. On veillera a bien justifier les réponses.

Calculer la réponse impulsionnelle (g, )nez correspondant & G[z]. Quel(s) nom(s) donne-t-on a un
filtre satisfaisant une relation de récurrence comme GJ[z] et ayant une réponse impulsionnelle du

type de (gn)nez ?

Réponses exercice: 19

. Stable car réponse impulsionnelle sommable. Causal car hy, = 0 pour n < 0.

by =an + %an_l. On parle de filtre réponse impulsionnelle finie ou MA (moving average cad en frangais moyenne

mobile).

. HZl=1+1ztet Hf) =1+ %e‘mﬂf

2
|H(f)|? = % + cos 2m f. Il s’agit d’un filtre passe-bas.
an = bp — %an_l et Gz] =1/(1+ %z’l) =1/H|[z].

G|z] est stable et causal, le domaine de convergence de G[z] est {z € C||z| > 1/2}. La causalité ressort directement de
I’équation de récurrence. La stabilité se constate au travers du domaine de convergence, qui a été choisi en cohérence
avec la causalité (complémentaire d’un disque de rayon plus petit que 1 puisque unique poéle situé a l'intérieur du
cercle unité). La stabilité se constate aussi par la sommabilité de (gn)nez-

gn =0 pour n < 0 et gn = (—1/2)™ pour n > 0. Il s’agit d’un filtre récursif et de réponse impulsionnelle infinie.

Exercice 20: filtre a temps discret On s’intéresse a un filtrage & temps discret dont le schéma
ci-dessous donne les notations :
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An )ne bn ne
ez 4, ) as) s

La réponse impulsionnelle est donnée par :

1 sin =0,
hp, =< —1/2 sin=1,
0 sinon.

Uniquement & partir de la réponse impulsionnelle, dire (en justifiant) si le filtre est :
— stable?
— causal ?

Exprimer & un instant n donné la sortie (b, )nez du filtre ci-dessus en fonction de lentrée (ap,)nez.

Déterminer la fonction de transfert en z H|[z] ainsi que la réponse en fréquence H(f) de ce méme
filtre.

Calculer |H(f)|? et tracer son allure en fonction de f. En déduire le type de filtre (passe-haut,
passe-bas, passe-bande, coupe-bande).

On s’intéresse maintenant au filtre causal, inverse du filtre précédent :

bn)ne An )ne
()—Z, (9n) / GI2] | (@n)nez

Exprimer a un instant n donné la sortie (a, )nez du filtre ci-dessus en fonction de cette sortie avant
linstant n et de Uentrée (b, )nez. Calculer la fonction de transfert G|z].

Préciser le domaine de convergence de G[z] et en déduire la stabilité (ou non) du filtre G[z].

Calculer la réponse impulsionnelle de (g, )nez et retrouver la stabilité (ou non) du filtre & partir de
(gn)nez-

Parmi les acronymes AR, MA, ARMA, RIF, RII, dire en précisant leur signification, ceux que ’on
donne aux filtres de fonction de transfert H[z| et G[z] respectivement.

Réponses exercice: 20

. Stable car réponse impulsionnelle sommable. Causal car h, = 0 pour n < 0.

H[z]=1- %zil et H(f)=1-— %e*"%f

CHH2 = % —cos 2w f. Il s’agit d’un filtre passe-haut.

an = bn + %a,kl et Gz] =1/(1 — %z‘l) =1/H|[z].

Le domaine de convergence de G[z] est {z € C||z| > 1/2}, en conformité avec la causalité. Ce domaine de convergence
contient le cercle unité, ce qui indique la stabilité. En d’autres termes, le domaine de convergence est le complémentaire
d’un disque de rayon plus petit que 1 puisque 'unique péle est situé a l'intérieur du cercle unité.

gn =0 pour n < 0 et gn = (1/2)™ pour n > 0. La stabilité se constate par la sommabilité de (gn)nez-

H{z] est un filtre RIF (réponse impulsionnelle finie), de type MA (moving average cad en frangais moyenne mobile).
Son inverse G|[z] est un filtre RII (réponse impulsionnelle infinie), de type AR (auto-régressif, ou encore récursif).
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Exercice 21: synthése d’un filtre numérique Cet exercice est un exemple simple de synthése
de filtre numeérique. On note (hg)kez la réponse impulsionnelle de ce filtre et H(f) sa réponse en
fréquence.

. Dans tout I’énoncé, les fréquences sont normalisées (ou réduites) et la lettre f désigne une telle
fréquence. Si F, est la fréquence d’échantillonnage des signaux d’origine, quelle lien existe-t-il entre
f, Fe et la fréquence réelle 7

. Le filtre que I’on souhaite synthétiser est un filtre numérique passe-bas idéal de fréquence de coupure
fo (réponse en fréquence égale a 1 dans la bande passante et nulle en dehors). Les coefficients du
filtre sont & valeurs réelles. Quelles est la plage de valeurs ayant un sens pour la fréquence normalisée
fo? Préciser ce que vaut la fonction H(f) et la tracer en fonction de f sur l'intervalle [—1,1].

. Comment s’exprime H(f) en fonction des coefficients (hy)rez de la réponse impulsionnelle ? Re-
marquer alors que 1’on peut écrire hy, = f_1{§2 H(f)et2™ f df pour tout k et calculer les valeurs de
(hi)kez.

. Le filtre obtenu est-t-il de réponse impulsionnelle finie ou infinie ? Est-il causal ou non ?

. On regarde maintenant successivement comment une troncature puis un décalage de la réponse
impulsionnelle (hy)rez obtenue permet d’approcher le filtre souhaité.

(a) Proposer une solution pour obtenir & partir de (hx)xez un filtre approché de réponse impul-
sionnelle finie avec 5 coefficients non nuls. On notera (hy)rez la réponse impulsionnelle de ce
filtre approché.

(b) Proposer une solution pour obtenir & partir de (izk) kez un filtre causal de réponse impulsion-
nelle finie avec 5 coeflicients non nuls. On notera (gi)rez ce dernier filtre obtenu.

. Comment s’exprime G|[z], fonction de transfert en z du filtre (gx)rez ? Quels sont les poles de G[z] ?
Que peut-on en déduire en terme de stabilité ?

. Que peut-on dire de fagon générale concernant la stabilité d’un filtre de réponse impulsionnelle
finie ?

Réponses exercice: 21
. La fréquence réelle est égale au produit fFe.

. fo compris entre 0 et 1/2. H(f) est périodique, période 1 et telle que

_J 1 sifelo, folull — fo,1]
H(f){o si £ €lfo,1— fol

< H(f) = X ez hie™ 2R 5 by = 2 fosine(2nk fo).
. Réponse impulsionnelle infinie, non causal.

- hy sik=-2-1,0,10u?2
(a) Troncature : prendre hy = { k S% o
0 sinon.
(b) Décalage de la réponse impulsionnelle : g = hj_z.

. Glz] = go+g127 1 4+ g2z 2 4 g3273 4 gaz™%. Le seul pole de G[z] est z = 0, & V’intérieur du cercle unité. G[z] est
donc stable.

. Un filtre de réponse impulsionnelle finie est toujours stable.

Exercice 22: cryptage vocal simple
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. Soit un signal réel a temps discret noté (z,)nez. On définit un nouveau signal a temps discret
(Yn)nez en changeant le signe d’un échantillon sur deux, c’est-a-dire pour tout n, y, = (—1)"z,,.

(a) Exprimer la transformée en z Y[z] de (yn)nez en fonction de celle de (z,)nez notée X|z].

(b) Rappeler le lien entre la transformée en z et la transformée de Fourier a temps discret. En
déduire le lien suivant entre les transformées de Fourier a temps discret respectives : Y (f) =
X(f+3)

(¢) Expliquer pourquoi opération qui & (2, )nez associe (yn)nez «inverses les hautes et les basses
fréquences.

. La technique précédente peut étre utilisée pour le cryptage d’un signal de téléphonie. On suppose
que (Zn)nez est le signal numérique provenant de 1’échantillonnage & 8kHz d’un signal vocal de
téléphonie, dont le spectre s’étend de 300Hz & 3400Hz.

(a) Représenter de maniére schématique le spectre du signal numérique de téléphonie en fonction
de la fréquence réelle (on indiquera sur le schéma la fréquence d’échantillonnage).

(b) Représenter de maniére schématique le spectre du signal (y,)nez correspondant en fonction
de la fréquence réelle. (on indiquera sur le schéma la fréquence d’échantillonnage).

(c) Justifier que le signal analogique synthétisé a partir de (y,)nez ne soit plus intelligible.

Réponses exercice: 22
(@) Y[l =2, ynz™" =3, (-)"anz™" = X[—Z]
. . : 1
(b) Y(f) = Y[eanf} _ X[_eanf} _ X[e127r(f+2)} =X(f+ %)
(c) La fréquence 0 devient la fréquence 1/2 et réciproquement (voir aussi les dessins a faire dans les questions
suivantes).

(a) Dessin a faire.
(b) Dessin a faire.
(c) Lié a l'inversion des hautes et basses fréquences.

Exercice 23: filtre &8 minimum de phase On considére le filtre a temps discret défini par la
relation de récurrence suivante entre le signal d’entrée (z,,)necz et de sortie (yn)nez :

Yn = Tpn — 2:6»,1,1 + 2$n72

. Donner la réponse impulsionnelle (h,,)nez du filtre en question. Le filtre est-il récursif ? de réponse
impulsionnelle finie ou infinie ? causal ? stable ou instable ?

. Notons X|[z] (resp. Y[z]) la transformée en z de (zy)nez (resp. (Yn)nez). Donner le lien entre X [z],
Y'[z] et la fonction de transfert en z du filtre, notée H|[z]. Calculer 'expression de H|[z] et préciser
le(s) zéro(s) et le(s) pole(s) du filtre. Retrouve-t-on les propriétés de stabilité et causalité ?

. Soit aw € C, || # 1 et soit le filtre défini par sa fonction de transfert en z : ®[z] = ;i‘i: . Rappeler
le lien entre la réponse fréquentielle ®(f) de ce filtre et ®[z]. En déduire qu’il s’agit d’un filtre
passe-tout (module de la réponse fréquentielle constant égal a un).

. En écrivant le filtre H[z] sous la forme H[z] = (1 —a127!)(1 — agz~1), montrer qu'il est possible de
le factoriser sous la forme H[z] = Hpr[z|Hpmin[z] o0 Hpr[z] est un filtre passe-tout et Hp,in[2] est
un filtre dont les poles et les zéros sont a l'intérieur du cercle unité. On traitera chacun des zéros
a1 et ag en s’inspirant de la question précédente.

. Un filtre tel que Hyin[z] dont les zéros et les poles sont & U'intérieur du cercle unité est dit filtre a
minimum de phase. Que peut on dire en terme de stabilité et de causalité pour I'inverse d’un filtre
a4 minimum de phase qui n’a pas de zéro sur le cercle unité ?

Réponses exercice: 23
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. Réponse impulsionnelle :

1 sin=0,
hp =< —2 sin=1,
2 sin = 2.

Filtre non récursif, de réponse impulsionnelle finie, causal et stable.

. Y[z] = H[2]X[z] et H[z] =1 2271 +2272. 29 = 0 est unique pole; a; = 1 +iet ag = 1 —i sont les zéros. Les poles

sont strictement & l’intérieur du cercle unité, d’ou stabilité et causalité.

. ®(f) = ®[e*?"f] et donc :

i2n f i2nf

; 1—ae™
_ — |eti2mf _
()| = — et | |-

1—ae™
a* —e—i2mf

1—aiz7 11— agz! . _ . _
1 * Z_l (al -z 1)(0’2 -z 1) = HPT[Z]Hmin[Z]

Hzl=(1—-0o127 )1 —azz7t) =
@2

al —z
—1 —1

avec Hpr|z] = %% et Hyinl2] = (af — 27 1) (ab — 271). (car |aq| > 1 et |az| > 1).
1 2

. Les poles de 1/Hyin[z] sont les zéros de Hyyiy|z] et réciproquement. Dans la mesure ou Hpin[2] a ses zéros tous

strictement & Dintérieur du cercle unité, les podles de 1/Hp,in[2] sont aussi tous strictement & l'intérieur du cercle
unité et Hyyin[z] admet donc un inverse stable et causal.

Exercice 24: banc de filtres et analyse en sous-bandes Le but de cet partie est d’étudier
quelques propriétés simples a la base d’une analyse en sous-bandes.

On considére des signaux a temps discret (an)nez, (bn)nez, (Cn)nez. Le signal b, est obtenu a partir
de a,, par:

Vn S Z bn = A2n,
Les échantillons pairs uniquement sont conservés ; on parle d’opération de décimation d’un facteur

deux, ce que 'on note par le signe @ Le signal ¢,, est obtenu a partir de b,, par :

Con = by,
Vn €7Z n "
can+1 = 0.

Cette opération qui consiste & intercaler un zéro entre deux échantillons est notée @ L’opération

globale est résumeée sur le schéma de la figure 4.

an by Cn

(2 D)2 (57
=0

FIGURE 4 — Sur- et sous-échantillonnage d’un facteur 2.

D’aprés la description ci-dessus, que valent les échantillons bg, b1, ..., bg et cg,cq,...,cq en fonction
des échantillons du signal a,,.

Rappeler la définition de la transformée en z d’un signal. Démontrer la relation :

Alz] + Al—2]

ol = 2L

ou Alz], Blz] et C[z] sont les transformées en z respectives de ay,, by, et ¢p.
On considére maintenant le systéme de la figure 5 ou Hylz], H; [z],l%[z],ﬁl[z] représentent des

fonctions de transfert en z de filtres. En utilisant la question précédente, trouver le lien entre Y[z]
et X|z], transformées en z respectives de y, et x,.
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Hyl] DD ol
T Yn

FIGURE 5 — Schéma de I'analyse en deux sous-bandes

. Déduire de la question précédente que 'on retrouve exactement X|[z] en sortie du systéme si et
seulement si les deux conditions suivantes sont vérifiées (on parle alors de reconstruction parfaite
du signal z,,) :

{Hdd%m+Hﬂ4ﬁmo (7a)
Hol2)Hol2] + Hy[2]H [2] = 2 (7h)

. On choisit dorénavant de se placer dans le cas :

Hy[2] = Hol—2]

Hyl2] = Hol2] ®)
H1 [Z] = _HO[_Z]

Montrer que (7a) est vérifiée et donner la contrainte qu’entraine la condition (7b) sur Hy[z].

. On suppose que la réponse impulsionnelle de Hy[z] est paire, cad que cette réponse impulsionnelle
vérifie : Vn € Z,h,, = h_,.

(a) Justifier que Hylz] = Ho[27!] dans ce cas.
(b) En déduire H;[z] = Ho[—271].

(c) Rappeler le lien entre la transformée en z d’une réponse impulsionnelle et la réponse en fré-
quence. Déduire alors de la question précédente que Hy(f) = Hp(1/2 — f). On parle pour
Hy[z] et Hy[z] de filtres miroirs en quadrature.

(d) On suppose que Hy[z] est un filtre passe-bas idéal de fréquence de coupure normalisée 1/4.
Tracer schématiquement le module de la réponse fréquentielle de Hy[z] et de Hi[z]. Le filtre
H,[2] est-il passe-bas, passe-haut ou passe-bande ?

. On abandonne ’hypothése de symétrie de la réponse impulsionnelle de Hy[z]. En effectuant le choix
(8), il n’existe pas de solution de réponse impulsionnelle finie satisfaisant (7b). On affaiblit cette
contrainte en :

Hol2]Hol2] + Hi[2]H, [2] = 22* (9)
ou k est un entier, k > 1.

(a) Pour la reconstruction parfaite, que signifie la présence d’une puissance de z dans (9) vis a vis
de (7b)?

(b) Montrer que pour k = 1, Pexpression Hy[z] = \%(1 + z) est une solution. On 'appelle filtre
de Haar.

. Quel peut étre I'intérét d’un systéme tel que celui de la figure 5 qui permet de décomposer le signal
initial en deux signaux r, et s, 7
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Réponses exercice: 24

1. bgp = ag,b1 = az2,b2 = aq,... et co =ap,c1 =0,c2a =az,c3 =0,c4 =aq,c5 =0,....

2.
Clz] = E cnz "t = E (czpz_Qp +02p+1z_(2p+1)> = E bpz~ 2P = B[z?)
n P

P

Ol = Fens™ = 3 (eap + capurz@H0) = Y agge
n P p

1
5 2021)27217 + ZGQP+1 =Pt 4 Z azp(—2) "% + Z a2p+1(*2)7(2p+1)
P P P P

_ Alz] + Al—Z]
2
3.
V(2] = Hol2] Ho[z] X [z] +fo[fz]X[fz] + ] Hi[2]X[2] + glm[—z}X[fz}
_ ool + M | HoleHol=2 + K[ [=2] 5
2 2

4. La question précédente indique que Y[z] = X|[z] lorsque les conditions indiquées sont satisfaites.
5. La premiére condition est satisfaite et on vérifie que la deuxiéme devient :
Holz] — Ho[—2]?> =2
a) Holz] =Y, hnz " =3, henz™ " =3, hnz™ = Ho[z7}]
b) Hi[z] = Ho[—2] = Ho[-2""]
(c) D’aprés la question précédente Hi[e?™f = Ho[e'™—27f] d’ou H1(f) = Ho(1/2 — f).

(d) Si Ho[z] est passe-bas idéal de fréquence de coupure normalisée 1/4, H[z] est passe-haut idéal, méme fréquence
de coupure.

7. (a) La reconstruction parfaite est souhaitée a un retard pres.
(b) Vérification facile.

8. Décomposition et codage en deux sous-bandes : I'une contenant plutdt les basses fréquences et Iautre les hautes
fréquences.

Exercice 25: transformée en cosinus discréte Cet exercice redémontre quelques propriétés
de la transformée de Fourier discréte (TFD) et introduit a partir de celle-ci la transformée en
cosinus discréte qui est trés utilisée dans les algorithmes de compression d’images (normes JPEG,
MPEG,...).

1. On considére les N échantillons (2, )n=0,... n—1 d’un signal a temps discret de durée finie. On rappelle
que la transformée de Fourier & temps discret (TFTD) de (25 )n=0,..., N—1 S’exprime par la somme
(ici finie) :

N-1

X(f) — Z xkefi%rkf

k=0
On notera (X, )n=o,...~—1 la TFD de (zp)n=0,... N—1-

(a) Rappeler comment la TFD s’interpréte comme les valeurs de la TFTD en N points de 'inter-
valle unité. Donner l'expression de (X, )n=o,.... n—1. Montrer que ’on peut écrire :

XO Zo
=W

Xn_1 TN-1
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ott W est la matrice W = (w*=D=1), ,_  y avec w € C a préciser.

(b) Calculer WW'". En déduire le lien entre 30 o=0 U2 et Z |X x|? ainsi que la formule de la
TFD inverse.

2. A partir de maintenant, on pose N = 2P et on suppose que (L, )n=0,... 2p—1 est réel. Quelle relation
de symeétrie cela entraine-t-il pour les coefficients Xy, 7

3. On fait 'hypothése supplémentaire que Vn € {0,...,2P — 1} Top_1—n = Tn.
Montrer que cela permet d’écrire :

k
VkG{O,...,P} eXp<lﬁ>XkAk

ol Ax € R est a préciser.

4. Que vaut Xp?

1 (A | = wk, 1
5. En déduire que Vn € {0,...,P — 1}, Ty = =24 g Ay, cos <—(n+ §)>
1

6. La transformée en cosinus discréte de (xn)nzo,___7p_1 est définie par les coefficients (Avk)kzo,___,]?_l
tels que :

Ao g =0,

Ay =
sike{l,...,P—1}.

=

9

- . . . . R P-1 P-1 7
Vérifier que cette transformation conserve 1’énergie du signal, cad que o = A2,
5 n=0 ‘n k=0 k*

Réponses exercice: 25

1. Voir cours.

2. Pour tout k € {1,...,2P —1} :

2P—1 (2P o 2Pl 2P—1 " * 2P—1 " *
—i J L — —i Ik
X2P—k —_ 2 : zje i27m 2 : $Je THp — 2 : x*e i2m 2% 5P —_ 2 : zje 127-r2P —_ XZ
i=0 =0

3. Pour tout k € {0,..., P} :

P—1 2P—1 P-1 P—1

_iom dk _ion k. — _ion dk _ion 2P=1-Dk
Xk — 2 :mje 27 ap 4 2 : zje Rrap _ 2 ::vje 2 5p 4 2 :1'2P—1—l6 i2m 55
j=0 j=P j=0 1=0
P-1 P-1
Z —igndk | _igpQP-1oi)k Z —izn i ion R iom
= zjle 2P +e 2P = zjle 2P +e P
j=0 Jj=0
P—1 -
ik iondk ik k mk 1
= e'T2P g z; (eiaﬂﬁeilﬁﬁ —+ 512‘" 2P e > T3P E $j cos —(] + —)
Jrr — P 2

et donc Vk € {0,...,P}7671W%Xk = A, € R avec Ay, = ZJ 0 2xj cos (”—;(j + %))
4. Xp =0.

5. Puisque Xp =0, on a pour tout n € {0,...,P — 1} :

1 o kn 1 inkn
Tn = ﬁ Z Xk6127r2p = 0 + — Z Xk ﬁ Z Xkelﬂ- P
k=0 k=P+1
P—1 P-1
1 1 i kn i (2P—k)n 1 1 i kn i kn
=5pX0+ 55 2 (Xke'"T +Xopge" T ) = = Xo+ o= > (Xpe™F 4 Xpe )
2P 2P P 2P 2P =1
P-1 P-1
A 1 H e H n v 1 A
_ ﬁ + E (Akewr(%ﬁ-%) _;’_Ake—wr(k?‘F#)) = F 20 + Z Ay, cos (—(77/+ ))
k=1
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6.
P-1 P-1 P-1 2P—1 2P—1 P-1
2o L[4 1| [Xol? 1 1
S A=l A =55 Yl = Y X =g Y ek =4l
k=0 2P 2 k=1 2P 2 k=1 4P k=0 2 k=0 k=0

Exercice 26: transformée en z

1. Calculer la transformée en z de a,, = cos(nf) si n > 0 et 0 sinon.

2. Calculer la transformée en z de b, =n +1sin > 0 et 0 sinon.

_ n+l

- nl

3. Calculer la transformée en z de ¢, sin >0 et 0 sinon.

4. Calculer la transformée en z de la suite causale définie par la relation de récurrence Vn > 0, d,, =
2d,,—1 — dp—2+ 1 (on appelle suite causale une suite telle que d,, = 0 pour tout n < 0). En déduire
I’expression de d,, en fonction de n.

Réponses exercice: 26 On rappelle que

1
Ve, |z] < 1: T .= Z z™ et par dérivations successives :
-T >0
1
Ao = 2 = (et D"
n>1 n>0

1 nn—-1) ,_ n+2)(n+1) ,
- ( ) 272%36

= x =
— 3
(1 :L') n>2 2 n>0

1.
Als] — e N i S| i0,—1ym , 1 —io —1yn
[z] = E cos(nf)z~" = 5 — " =3 E (e'277) +5 5 (e7'%27)
n>0 n>0 n>0 n>0
1 1 1 1 z z
et donc pour |z|>1: Afz] == - + - =—|—F+ —7
pour 7 2 2 |:lfe‘9z—1 176_‘02_1:| 2 |:zfe“9 zfe—‘@}

22 — zcos

22 —2zcosf+1°
2. D’aprés les rappels ci-dessus, il vient :
1 22

Vz,|z| > 1: B[z]:g(n—l—l)z* = A=1/2)° = Gz

3. En utilisant la régle de d’Alembert, on constate que C[z] converge sur C*.

+1 _ 1 _ -n _ 1 _ —-n _
C[z}:zn anzmz "+Z%:ZIZW n+2%:(zl+1)el/z.

|
n>0 n n>1 n>0 : n>0 n>0

4. On remarquera que la suite (dn)pecz est entiérement définie puisque dn, = 0 pour n < 0 et la relation de récurrence
définit ensuite les valeurs pour n >0 :dp = 1,d1 = 3,d2 =6,....
En prenant la transformée en z de la relation de récurrence (qui s’écrit dp = 2dn—1 — dp—2 + 1(n > 0)), il vient
D[z] =2271D[2] — 2 2D[z] + 3_,,5o 2~ ", valable sur le domaine |z| > 1. Par suite :
1 1 1

Sur le domaine |z| > 1: Dlz]

T 12z 14221- 21 (1—2z1)3"

On peut alors en déduire ’expression de d, pour tout n par transformée en z inverse. D’aprés les rappels ci-dessus :

Vz |zl >1: Dl = ﬁ _ awyﬂt

n+2)(n+1)
2

et donc dp, = ( sin > 0 et est nul pour n < 0.
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Exercice 27: transformée de Fourier temps discret Calculer la transformée de Fourier temps
discret du signal :

1 sin=0,1,...,.N—1

0 sinon.

Réponses exercice: 27
X(f) = Z l‘neiaﬂ-nf
nez

N-1 —i2n NV
_ —i27nf __ 1-e !
= E e = —
1 —e—i27f
n=0

e NS sin(r N f) _ ir(1=N)f sin(wN f)
e~imf  sin(mf) sin(n f)

Exercice 28: fonction d’autocorrélation / densité spectrale d’énergie Soit le signal a
temps discret (o > 0 est une constante)

—an g >0
o = e S?TL_ , (10)
0 sin<O0.

1. Montrer que z,, est un signal d’énergie finie et calculer son énergie E,.
2. Calculer la fonction d’autocorrélation en énergie v, (k) et retrouver la valeur de E,.
3. Calculer la densité spectrale d’énergie T';(f).
4. Retrouver E, a partir de 'y (f).
5. Exprimer (sans calculer) I'énergie du signal contenue dans la bande de fréquences [—1/4,1/4].
Réponses exercice: 28
L By =30 = —Lor.
2.
+oo (n—k) +oo (k+p) e—ok
— —an  —oa(n— — —Q —x _
vk > 0, 'yx(k)fze e 726 Ple pim
n=k p=0
+oo etk
VE <0, v2(k)= Z e—amemaln=k) — P et donc finalement :
n=0
e—alk|
Vk € Z, vz (k) = ————. On note que E; = 7,(0).
1—e 2

3. On peut faire le calcul au choix des deux fagons suivantes :

i 1 oo B N oo B )
Fx(f):Z’Yx(k')e 127rkrf: 1_67204 1+Ze ake 127rfk:+ze ake+127rfk
keZ k=1 k=1
1 efaefﬁ‘rrf efae+i27'rf

= 1— 67204 + 1— efaefi%'rf + 1— efae+i2‘rrf

- 1

T 14 e—20 — 2e—a cos(2nf)

2 o 9
Fz(f) — ‘X(f)‘2 _ Z $n67i2ﬂn‘f _ Z efanefiQTrf
nez n=0
_ 1 2 1
T 1 —e(ati2nf) | T (1 — e~ 127H))(1 — e—eti2nf))
1

1+ e=20 — 2e~acos(27f)
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1
B, =/0 T.(f) df

1 f 1 dz
Ti2n ) (l—eezml)(1—em92) 2

1 eta
= —7{ dz
i2r J (z—e¥)(et> —2)

R e+cx o e+o¢
= es z=e€ =
(z —e=¥)(et™ — 2)’ eta — g«
1
T 1-_e2a

5. [1)4Ta(f) df

30

Exercice 29: transformée en z Calculer la transformée en z des signaux :

1. (upn)nez défini par u, = 1,n > 0 et u, =0,n < 0 (échelon).
2. (vn)nez défini par v, = nu,.

Réponses exercice: 29

1. Ulz] = # sur le domaine |z| > 1.
_ —n— d - d 1 _
2. V[z] = anonz "= ZanonZ nl = —zaanoz "= -z (1_271> = -

défini par |z| > 1.

2 sur le domaine
z=h)
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Signaux aléatoires

Exercice 30: processus flip-flop
Soit un processus de Poisson homogéne sur R de paramétre A : n(t) est défini comme le nombre
d’événements survenus entre instant 0 et Uinstant ¢. On rappelle que n(t) est défini par les trois
propriétés suivantes :
(i) n(0) =0,

( ) est un processus & accroissements indépendants,

(i

(iii) pour t > s, P(n(t) —n(s) = k) = %!S))ke*)‘(tﬂ) si k € N et 0 sinon.

i)
)
(a) Calculer E{n(t)}.
(b) Calculer E{n(t)(n(t) — 1)} et en déduire E{n(t)?}.
)

(c

On définit le processus flip-flop comme le signal aléatoire x(¢) donné par P(x(0) = 1) = P(x(0) =
—1)=1/2 et z(t) = (=1)"®z(0).
(a) Calculer E{z(¢)} (t € R).
(b) Calculer E{z(t)z(t — 1)} (t € R, T € R).
)

(¢) En déduire que z(t) est un signal aléatoire stationnaire au sens large, centré et de fonction
72)\\7\.

n(t) est-il un processus stationnaire ?

d’auto-corrélation e

Réponses exercice: 30

(a) Posons v = At. Alors n(t) ~ P(v) (loi de Poisson de paramétre v) et donc :

E{n(t)} = > kP(n(t) = k) = k—e v Z =
k=0 k=0
Donc E{n(t)} = At.
(b)
E{n(t)(n(t) — 1)} = Zk(k—l)]P’( ()*k)*uQZ = - —”:VQ dott : E{n(t)®} =12 + v

k=0
Donc E{n(t)2} = (\t)% + At.
(¢) n(t) n’est pas stationnaire.

P(z(t) = 1) = P(z(0) = 1)P(z(t) = 1/2(0) = 1) + P((0) = —1)P(x(t) = 1/z(0) = —1)
Or : P(z(0) =1) =P(2(0) = —1) = 1/2 et de plus :
> (AJt])2Pe= Al ch(A]t])

P(z(t) = 1/x(0) = 1) = P(n(t) — n(0) est pair) = Z )] =

_ - )= LN QD e M sh(Aft)
P(z(t) = 1/x(0) = —1) = P(n(t) — n(0) est impair) = pz:% 1] =~

Il vient alors P(z(t) = 1) = 1/2 et de méme P(z(t) = —1) = 1/2, d’ou E{z(t) = 0}.

E{z(t)z(t — 1)} =1.[P(z(¢t) =1Nz(t—7)=1)+Pz(t) = -1Nnz(t —7) = —1)]
—1LPE@) =1nzlt—7)=-1)+P@t)=-1Nna(t—7) =1))
Or:Plz(t)=1Nz({t—71)=1)=P(z(t) = DP(z(t — 7) = 1/z(t) = 1)
1 ch(A|7])
2 Al

=P(z(t) = 1)P(n(t) — n(t — 7) est pair) =

1 ch(A\|7])
2 ATl
1 sh(A|])
5 eAlTl
1 sh(A|7])
5 eAlTl

De méme : P(z(t) = —1Nz(t—7) = —1) =

Plz(t)=1Nz(t—71)=—-1) =

Plz(t)=—-1Nz(t—71)=1) =

11 vient finalement E{z(t)z(t — 7)} = e~ 2Tl
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(c) Résulte de ce qui précede.

Exercice 31: processus de Wiener et Ornstein-Uhlenbeck

. Soit w(t) un processus de Wiener (ou mouvement brownien). On rappelle que w(t) est défini par

les trois propriétés suivantes :
(i) w(0) =0,
(if) w(t) est un processus & accroissements indépendants,
(iii) pour ¢t > s, w(t) — w(s) ~ N(0,t —s) (o N(0,t — s) représente la loi normale de moyenne
nulle et variance t — s).

(a) Calculer E{w(t)} (¢t € R).
(b) Que vaut E{w(t)?} ? w(t) est-il un signal stationnaire ?

Pour t, > t; > 0, montrer que E{w(t2)w(t1)} = E{w(t1)?} et en déduire E{w(t2)w(t1)}
d’apreés ce qui précéde.

—
o
~

On définit le processus de Ornstein-Uhlenbeck de la fagon suivante : z(t) = e~“w(e?*!) ou w(t) est
un processus de Wiener et a > 0 fixé.
(a) Calculer E{z(t)} (t € R).
(b) Calculer E{z(t)z(t — 1)} (t € R, 7 € R).
(¢) En déduire que z(t) est un signal aléatoire stationnaire au sens large, centré et de fonction
d’auto-corrélation eIl

Réponses ezxercice: 31

(a) w(t) ~N(0,t) donc E{w(t)} =0.

(b) Pour la méme raison, E{w(t)?} =t et on constate que w(t) n’est pas stationnaire.

(¢) Pour t2 > t1 > 0, 'indépendance des accroissements donne E{(w(t2) — w(t1))(w(t1) — w(0))} = E{(w(t2) —
w(t1)) YE{(w(t1) —w(0))} et cette derniére quantité est nulle compte tenu de la distribution des accroissements.
Enfin, comme w(0) = 0, il vient : E{(w(t2)w(t1)} = E{w(t1)?} = t1.

(a) E{z(t)} = E{e**w(e2?*)} = 0 d’aprés les propriétés de w(t).

E{z(t)z(t —7)} = E{e_atw(eQat)e_a(t_T)w(e%(t_T))}
_ e—QateaT]E{w(GQat)w(EQa(t—T))} _ e—QateaTemin(Qat,Qa(t—T))

e—alrl

(c) Résulte de ce qui précéde. Remarquer que le processus de Ornstein-Uhlenbeck a les mémes statistiques d’ordre
deux que le processus flip-flop alors que ce sont deux signaux aléatoires trés différents.

Exercice 32: stationnarité, ergodicité (temps continu) On considére le signal aléatoire a
temps continu x(t) = A cos(2w fot + ¢) ot A et fp sont des constantes réelles strictement positives
et ¢ est une variable aléatoire équirépartie sur Uintervalle [0, 27]. On désigne par E{.} Pespérance
mathématique et par < . > la moyenne temporelle d’une expression quelconque.

. Calculer E{z(t)} et < z(t) >.

Calculer E{z(t)z(t — 7)} et < x(t)z(t — 7) >. Conclusion.
Quelle est la densité spectrale de puissance S;(f) de x(t) ? Quelle est la puissance du signal ?

Réponses_exercice: 32 Cf. poly.

Exercice 33: stationnarité, ergodicité (temps continu) On désigne par E{.} lespérance
mathématique et par < . > la moyenne temporelle d'une expression quelconque (cad que par

définition : < z(t) >£ lmy 00 55 fTT z(t) dt).
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Soit le signal aléatoire & temps continu :
.’L'(t) _ AleiQTrflt +A2€i27rf2t
ou f1, fo sont des constantes réelles strictement positives et A;, Ao sont des variables aléatoires &

valeurs dans C. A; et A sont supposées centrées (E{A;} = E{Az} = 0).
. Calculer E{z(¢)} et < x(t) >. Conclusion.

(a) On suppose de plus que A; et As sont décorrélées et telles que |A;| = |Az| = 1. Calculer
E{z(t)x(t — 7)*} et < z(t)z(t — 7)* >. Conclusion.

(b) On suppose ici que A; et Ay sont corrélées (et donc non indépendantes). Calculer a nou-
veau E{z(t)z(t — 7)*} et montrer qu’il apparait des termes supplémentaires. Le signal est-il
stationnaire dans ce cas?

. Dans le cas ou le signal est stationnaire au sens large, calculer la densité spectrale de puissance
S (f) de x(t) ? Quelle est la puissance du signal ?

Réponses exercice: 33

. E{z(t)} =< z(t) >= 0. Le signal est stationnaire et ergodique au 1°* ordre.

(a) E{z(t)z(t —7)*} =< x(t)z(t — 7)* >= €717 4 12727 Le signal est stationnaire et ergodique au 2" ordre
(remarquer la nécessité de |A1| = |A2| = 1 pour l'ergodicité.

(b) Si A1 et Az sont corrélées, non stationnarité (sauf pour fi = f2) en raison des termes croisés supplémentaires
(qui dépendent de ¢ :

E{A; A3}e 2 [(F1—F2)t+f27] | BLA% Ay )el?ml(f2—f1)t+f17]

- Sa(f) =0(f = f1) +6(f — f2); Pr = Ru(0) = 2.

Exercice 34: filtrage, bruit blanc On considére le signal a temps continu x(t) = a cos(27 fot +
@) + b(t) ot a et fp sont des constantes réelles, ¢ est une variable aléatoire uniformément répartie
sur l'intervalle [0,27] et b(t) est un bruit blanc (centré) dont la densité spectrale est notée 22. Les
deux processus a cos(2m fot + @) et b(t) sont supposés indépendants.

. Montrer que le signal z(t) est stationnaire au sens large et calculer sa fonction d’autocorrélation
Y2(7), T € R.

. Calculer I'; (f) la densité spectrale de puissance du signal z(t).

. Le signal x(t) est appliqué en entrée d’un filtre dont la réponse fréquentielle vaut :

0 sinon.

H(P) = { 1 si felfo—BJ2 fo+ B/2U[~fo— Bj2,—fo+ B/

Calculer la puissance du signal y(¢) en sortie du filtre.

Réponses exercice: 34

. En utilisant I'indépendance des termes croisés et le fait que le bruit est centré, il vient :

E{z(t)z(t — 1)} = E{a2 cos(27 fot + @) cos(2mfo(t — 7) + &)} + E{b(t)b(t — 7)}
a2
= E{? ( cos(dmfo(t — 7/2) + 2¢) + COS(Zﬂ'f()T))} + E{b(t)b(t — )}

¢ étant uniformément distribuée sur [0, 27] et b(t) étant blanc, le signal est stationnaire de fonction d’autocorrélation :

a2

No
Yz (T) = > cos(2m for) + 75(7—)
. La densité spectrale de puissance est la transformée de Fourier de I’expression précédente :
a2
4

Pa(f) = % (60 — fo) +8(F + fo)) + 0
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. En notant I'y(f) la densité spectrale de y(¢), la puissance s’écrit :

+oo —fo+B/2 fo+B/2 2
po= [ rnd= [ nd [ R = BNy

—o0 —fo—B/2 0—B/2

Exercice 35: filtrage d’un signal aléatoire On considére un signal aléatoire & temps continu
z(t) que 'on suppose réel, centré et stationnaire au sens large. On suppose qu’au cours d’'une
transmission, un récepteur regoit le signal y(t) donné par :

y(t) = z(t) + pa(t — 0)
oil p et 0 sont des constantes réelles. On note 7, (7) £ E{x(t)z(t — 7)} la fonction d’autocorrélation
de z(t).

. Rappeler la définition de la stationnarité au sens large. Calculer E{y(¢)} puis la fonction d’autocor-
rélation de y(t) (notée 7, (7) ) en fonction de celle de z(t). Le signal y(t) est-il stationnaire au sens
large ?

. Exprimer la puissance E{y(#)?} en fonction de 7, (0) et 7. (6).
. Calculer la densité spectrale de y(t) (notée I'y(f)) en fonction de celle de x(t) (notée I'z(f)).

. Justifier que y(t) est obtenu par filtrage de x(¢). Trouver la réponse en fréquence H(f) du filtre et
retrouver l’expression précédente de I'y(f) a laide de la formule des interférences.

. On suppose que z(t) est un signal bande étroite autour de la fréquence fy. y(t) est-il également
bande étroite 7 Pourquoi ?

. On suppose que z(t) s’écrit z(t) = cos(27 fot + ) ol ¢ est une variable aléatoire équirépartie sur
[0, 27]. Justifier la stationnarité de z(t) dans ce cas.

Réponses exercice: 35

- E{y(t)} = 0. vy (1) = E{y(®)y(t — 1)} = (14 p*)72(7) + p(Y2 (7 + 0) + 72 (1 — 0))

- E{y(H)?} = 7(0) = (1 + p*)72(0) + 2072(0)

- Ty(f) = [(1+ p?) + 2p cos(2m0 )7 ()

. L’équation donnant y(t) en fonction de z(¢) est un exemple classique de systéme linéaire et invariant dans le temps :
c’est donc une opération de filtrage et la réponse en fréquence est : H(f) = 1 + pe~270F 1, relation ry(f) =

|H(f)|?T%(f) redonne bien I'expression de la question précédente.

. y(t) est aussi bande étroite : le support du spectre de y(t) est en effet contenu dans celui de z(t) d’aprés les relations
des deux questions précédentes.

. Voir poly.

Exercice 36: modulation d’un signal aléatoire bande limitée On considére le signal suivant
& temps continu :

x(t) = a(t)ei%f"t

ol fp est une constante et a(t) est un signal & valeurs complexes.

. On suppose que a(t) est un signal déterministe dont la transformée de Fourier existe et est notée

A(f).
(a) x(t) est-il un signal déterministe ou aléatoire ?
(b) Exprimer X (f), la transformée de Fourier de x(t) en fonction de A(f).

(c) Sia(t) est a bande limitée [—B, B], quelle est la bande occupée par z(t) ?
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. On suppose maintenant que a(t) est un signal aléatoire centré stationnaire au sens large dont la
fonction d’autocorrélation est notée v, (1) £ E{a(t)a*(t — 7)}.

(a) Calculer la fonction d’autocorrélation v, (7) de x(¢) et justifier la stationnarité au sens large

de z(t).

(b) Calculer T';(f), la densité spectrale de puissance de z(t) en fonction de I', (f), densité spectrale
de puissance de a(t). Si a(t) est a bande limitée [—B, B] (cad si I'y(f) est nul en dehors de
cette bande), que peut-on dire de z(t) ?

Réponses exercice: 36
(a) z(t) est déterministe.
(b) X(f) = A(f — fo) (propriété de modulation de la transformée de Fourier)
(¢) Bande occupée par z(t) : [fo — B, fo + BJ.
(a) Ya(7) = 7a(r)e?m/0T.

(b) Tx(f) =Ta(f — fo)- Si a(t) & bande limitée [—B, B], la bande occupée par z(t) est [fo — B, fo + B].

Exercice 37: filtrage, bruit blanc

1. On consideére le systéme qui & un signal z(t) & temps continu associe le signal y(¢) défini par :

(a) Montrer que ce systéme correspond a un filtre (au sens : systéme linéaire et invariant). Quelle
est sa réponse impulsionnelle h(t) ?

(b) Le filtre est-il stable ? causal ?
(¢) Quelle est la réponse en fréquence H(f) du filtre ?

. Le filtre précédent est attaqué en entrée par le signal aléatoire a temps continu z(t) = A cos(27 fot +
@) + b(t) ou A et fp sont des constantes, ¢ est une variable aléatoire répartie uniformément sur
[0,27], b(t) est un bruit blanc de densité spectrale I'y(f) = 22. Les processus A cos(27fot + ¢) et
b(t) sont de plus indépendants.

(a) Calculer la densité spectrale de puissance I';(f) du signal z(¢) en entrée.

(b) En déduire la densité spectrale de puissance I'y(f) du signal y(t) en sortie.

. Calculer la puissance du signal y(t) & partir de sa densité spectrale (indication : on pourra utiliser
la formule de Parseval pour 'une des intégrales).

TF !

. On donne la transformée de Fourier inverse (sinc(wf7'))? — FAor(t)  on
1—|t|/T silt| <T,
i T S
0 sinon.

(a) En déduire la fonction d’auto-corrélation v, (7) de y(t).

(b) Vérifier que 'on retrouve la puissance du signal y(t) trouvée a la question 3.

Réponses exercice: 37

1/T sitel0,T],

0 sinon.

1. (a) h(t) ={

(b) Stable et causal.



January 30, 2026 36

(c) H(f) = e "™ fTsinc(n fT).

2. (a) L’autocorrélation de z(t) vaut vz(7) = ATZ cos(2m for) + %5(7—) et la densité spectrale de puissance vaut donc
2
To(f) = A2 (80 + fo) +6(F — fo)) + 2o
(b)

2
(1) = [HPT () = sind? (s T) [ 5 (80 + o)+ 67 = 1)) + 37

2 2
= %sian(ﬂfoT)é(f + fo) + %sian(ﬂfoT)é(f — fo) + sinc2(7rfT)%

3. En remarquant a l’aide de la relation de Parseval que fR Sil’lC2(7TfT) df = 1/T, on obtient la puissance Py =
2 .
JeTy(f) df = 3§ + Ssine(wfoT)

4. (a) w() = ’L%Qsinc2 (mfoT) cos(2m fot) + %QAQT ()

(b) Py =y (0).

Exercice 38: filtre adapté (temps continu) On considére un signal déterministe s(¢) qui
modélise une impulsion (par exemple radar/sonar). Cette impulsion est réfléchie sur une cible et on
suppose que le signal regu en retour (par exemple sur antenne de réception) s’écrit :

z(t) = s(t — 1) + b(t)

ot 7 > 0 représente un retard et b(¢) est un bruit blanc centré. Un traitement est appliqué au signal
x(t) en réception afin de maximiser le critére de "rapport signal sur bruit". Plus précisément, on
applique & z(t) un filtre dont la réponse impulsionnelle est notée h(t) et la réponse en fréquence est
notée H(f).

1. Rappeler comment s’exprime ’énergie Fy du signal s(t) ?
2. Si z(t) est la sortie du filtre h(¢) lorsque x(t) est en entrée, justifier en deux mots que l'on puisse

écrire Z(t) = 5(t — 7) + b(t) ot 5(¢) et b(t) sont les sorties du méme filtre h(t) avec respectivement
s(t) et b(t) en entrée.

3. Exprimer 5(t) en fonction de H(f) et S(f) et en déduire 5(0) = [ H(f)S(f) df.

4. On note Ny/2 la densité spectrale de puissance de b(t).
(a) Que vaut la densité spectrale de puissance de b(t) (notée I';(f))?
(b) En déduire la puissance de b(t). Que vaut E{|b(7)[*} ?

5. On désire maximiser le critére "rapport signal sur bruit" en sortie du filtre & I'instant 7. Ce critére
est défini par :

02
(RSBL::—Eil¥7
E{lo(7)[*}
(a) Exprimer (RSB), en fonction de H(f), S(f) et No.
(b) Appliquer I'inégalité de Cauchy-Schwarz au numérateur pour montrer que (RSB), < %

(¢) Montrer que (RSB), est maximal lorsque H(f) = KS(f)*, ot K est une constante que l'on
peut choisir librement.

6. Nous supposons dans la suite que H(f) = S(f)*. Quelle est la réponse impulsionnelle h(t) ? Le filtre
correspondant est appelé filtre adapté.

7. On suppose maintenant que le bruit est identiquement nul. Montrer que le calcul de la sortie du
filtre adapté correspond a lauto-corrélation du signal s(¢). Commentaire éventuel ?
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. Soit le signal z, = y, + e, ol e, est un bruit blanc centré, indépendant de y,, et de puissance o;.
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Réponses exercice: 38

. Voir cours.

. Linéarité et invariance dans le temps.

L 3() = [ H()S()eT 2Tt df et 5(0) = [ H()S() df.

(a) T3(f) = ZEHI
(b) Puissance : E{|b(1)|?} = [ %\H(f)‘2 df.

(a) facile.
(b) facile.
(c) cas d’égalité de I'inégalité de Cauchy-Schwarz.

h(t) = s(—t)*.

Si b(t) = 0, on peut alors écrire :
F(t) = h(t) % a(t) = /h(@)x(t —0)dt = /5(79)*3(15 —6—r)db
= /s(G)*s(t —740)d0 =~s(t—71)

Exercice 39: stationnarité, ergodicité, bruit blanc (temps discret)

. Soit le signal aléatoire (complexe) a temps discret x,, = elwntd) ot w € R et ¢ est une variable

aléatoire uniformément distribuée sur [0, 27].

(a) Calculer E{z,} et E{z,x _,}. Que dire de la stationnarité ? Que vaut I’auto-corrélation v, (k)
du signal z,, 7
(b) Calculer :

]\}EPOOQN—Fl Z Tn  eb: NITOOQNH Z Tk

Que peut-on dire concernant ’ergodicité ?

. On considére maintenant le signal y,, = etlwintér) 4 pilwantez) oy w1,ws sont fixés dans R et ¢1, ¢

sont des variables aléatoires indépendantes et uniformes sur [0, 27].
(a) yn est-il stationnaire ? Calculer E{y,} et v, (k) = E{yny’_,}.
(b) Calculer la puissance de y,,.
2

Calculer la puissance, la moyenne et 'autocorrélation de z,,.

Réponses exercice: 39

(a) E{zn} =0; E{zna’_,} = ek (zn)nez est stationnaire au sens large et vz (k) = e'wk.

(b)

N N
0 i 2wl 0 €T 1 :
lim —— E Ty = ) S% w2l L€ et : lim E TnZ)_j = eiwk
N—oo 2N 41 9 siw#2mlLET N—oo 2N +1

Signal ergodique au sens large pour w # 27¢, £ € Z.

(a) yn est stationnaire, E{yn} = 0, vy (k) = el@1F 4 eiw2F,
(b) Py=2.

. PZ:2+Ug,]E{Zn}:O;E{znz;_k}:eiw1k+eiw2k+025k_

Exercice 40: filtrage d’ordre un d’une suite aléatoire
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1. On considére un filtre a temps discret causal défini par la relation suivante entre son entrée (2, )nez
et sa sortie (Yn)nez :

(a)
(b)

()
(d)

1
vn Yn = Tn + §yn71

Déterminer la fonction de transfert en z du filtre causal ci-dessus, que I'on notera H|z].

Préciser et justifier le domaine de convergence associé & H|z]. Indiquer si le filtre est stable en
justifiant.

Calculer la réponse en fréquence H(f) du filtre.
Calculer la réponse impulsionnelle (hy,)nez.

2. On suppose qu’en entrée du filtre précédent, (2, )necz est un signal aléatoire, centré, stationnaire au
sens large et de fonction d’auto-corrélation :

—_— N~
[<IR=>

—
o

1 sik=0,
Yo(k)=4¢ 3 sik=1ouk=-1,
0 sinon.

Calculer la densité spectrale I'y (f) de (2 )nez-
Calculer la densité spectrale T'y(f) de (yn)nez-
Rappeler la définition et donner la valeur de la puissance de (2, )nez.

Exprimer la puissance de (y, )necz en fonction de la densité spectrale de puissance, puis effectuer
le calcul (indication : on pourra interpréter I'intégrale comme une intégrale de la variable complexe
z le long du cercle unité).

Réponses exercice: 40

H[:) = —=r-
2

Domaine de convergence {z € C||z| > 1/2} (correspondant au filtre causal). Le filtre est stable.
H(f) = H[e®™/] =

_ I —i2nf "
1 3€ !

hn=0sin<0et hy= 5= sin>0.

Tz(f) =1+ cos(2nf)

Ly(f) = HWDPTe() = Gopemapy (e fermsy = s/i-costory 9 (n)nez.

Pp =E{|zn|?} =72(0) = 1
En notant ¢ I'intégrale le long du cercle unité et I'z[z], ['y[2] les transformées en z respectives des autocorré-
lations vz (k), vy (k) :

Py :/Olpy(f) df:}{Fy[z] d

i2mz
1 dz
= ¢ H[z]H[z" |Tz[2] -
27wz
1 14 =2t p 1 —(z+1)2
= — - ¢ @ dz=— [ SO
i2r ] 21— 21 - 2) 2 J z2(z— 3)(z —2)
_ 2 _ 2
= Res #,zzo + Res %,z:1/2
z(z — 5)(2—2) z(z — 5)(2:—2)
=—-14+3=2

Exercice 41: filtrage & temps discret d’un bruit blanc On considére un filtre & temps discret
causal défini par la relation suivante entre son entrée (z,,)nez et sa sortie (yn)nez :

1
vn Yn = Tn + §yn71
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. Déterminer la fonction de transfert en z du filtre causal ci-dessus, que l'on notera H|z].

. Préciser et justifier le domaine de convergence associé & H|[z]. Indiquer si le filtre est stable en
justifiant.

. Calculer la réponse en fréquence H(f) du filtre.

. On suppose qu’en entrée du filtre précédent, (z,,)nez est un bruit blanc centré de puissance o?2.
Préciser ce que vaut la densité spectrale I';(f) de (2 )nez et calculer la densité spectrale I'y(f) de

(yn)nGZ-

Réponses exercice: 41

. Le domaine de convergence est D = {z € C||z| > 1/2} U {co} (filtre causal, D est le complémentaire d’un disque).
Le filtre est stable car D contient le cercle unité.

L H(f) = Hle?] =

_ 1
_1.-i2
1 € 2w f

2 2

L Ta(f) = 02 et Ty(f) = IH()PTef) = o1y Jormen = s/i—eoGep

Exercice 42: filtrage d’un signal aléatoire (temps discret) Soit un signal aléatoire a temps
discret (2, )nez réel, centré et tel que pour tout k € Z, E{x,x,—r} = d (ou par définition o = 0
sik#0et do=1).

. Le signal (z,,)nez est-il stationnaire au sens large ? Si oui, quelle est sa fonction d’autocorrélation ?

. On filtre le signal (z,)nez par un filtre dont la réponse impulsionnelle est donnée par :

W a™ sin >0,
"Tl0 sin<O,

ol a est réel, |a| < 1. Donner 'expression de la sortie (y,)nez du filtre et en déduire E{y, }.

. Calculer la fonction d’autocorrélation v, (k), k € Z du signal (yn)nez (on pourra faire le calcul pour
k > 0 et utiliser la symétrie de la fonction d’autocorrélation).

. Calculer la densité spectrale de (yn)nez dont on rappelle la définition dans le cas présent : I'y(f) =
2 kez Yy (k)em 127k

. Vérifier que la densité spectrale obtenue précédemment correspond au résultat donné par la formule
liant les densités spectrales en entrée et en sortie d’un filtre.

Réponses exercice: 42
. (Zn)nez est stationnaire au sens large de fonction d’autocorrélation vz (k) = 6 (k € Z).
. Pour tout n € Z, yn = 3, aFz,,_k et donc E{yn} = 3", a*E{z,_1} = 0.
. Pour k > 0 fixé,
oo oo oo oo
() = Efyntn i} = E{S aPnp S alrn_p_g) = 55 P IE{a(n — pla(n — k- )}

p=0 q=0 p=0g¢=0

oo ak
p+q — k+2q _
@ 6k+q_p—§:a T 1 a2
0 q=0

]38

oo
p=0

q

Y
1—a

et par symeétrie, pour tout k € Z, vy (k) = >
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) |k ) 1 0 ) )
_ —i2nkf _ a —i2nkf _ k_—i2wkf k_+i2wkf
Fy(f)*Z’\/y(k)e 72—176126 =1 a2 1+Zae +a”e
kez kezZ k=1
B 1 ae— 27 f aeti2mf
T 1-—a? 1—ae—27f 1 — qeti2nf

1
1 —2acos(2rf) + a?

. La densité spectrale en sortie est donnée par la relation : T'y(f) = |H(f)|?T'«(f) ot Tx(f) est la densité spectrale en
entrée et H(f) la réponse en fréquence du filtre.

oo
H(f) _ thefi%'rkf _ Z akefiQTrkf _
k=0

keZ

1
1—ae—i27f

Pz (f) = Z ’Yx(k)e_i%rkf =1
keZ

On retrouve alors bien l’expression précédente.

Exercice 43: filtrage d’un signal aléatoire (temps discret) Soit un signal aléatoire & temps
discret (2,,)nez réel, centré et tel que pour tout k € Z, E{x,z,_} = 05 (on par définition 6, = 0
sik#0et do=1).

. Le signal (2, )nez est-il stationnaire au sens large ? Si oui, quelle est sa fonction d’autocorrélation ?

. On filtre le signal (z,)nez par un filtre dont la réponse impulsionnelle est donnée par :

ho— a sin >0,
" l0 sin<o0,

ol a est réel, |a| < 1. Donner l'expression de la sortie (y,)nez du filtre.

. Calculer H|[z], la fonction de transfert en z du filtre précédent et préciser son domaine de conver-
gence.

. Calculer la densité spectrale T'y(f) de (yn)nez-

Réponses exercice: 43

. (Zn)nez est stationnaire au sens large de fonction d’autocorrélation vz (k) = dj.

— _ k
. Yn = ZkeN ATy = Zio:() A" Tp—k-

. H[z]=300 jaz" " = ﬁ sur le domaine défini par |z| > |a].

2

L T(f) = | =ty

Exercice 44: filtrage d’un signal aléatoire (temps discret) Soit le filtre & temps discret
défini par la relation de récurrence suivante entre le signal d’entrée (z,)nez et le signal de sortie
(yn)nGZ :

Vn € 7Z Yn = QYn—1 + Tp, (11)
ou a est réel, |a| < 1.

. Calculer la transformée en z (notée H|[z]) du filtre en question. Compte tenu de la causalité imposée
par léquation (11), quel est le domaine de convergence de H|z] ? Que peut-on en déduire concernant
la stabilité du filtre ?

. Calculer la réponse impulsionnelle (hy)nez du filtre causal H|[z].
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Le filtre est attaqué en entrée par un signal aléatoire a temps discret (x,,)nez réel, centré. De plus,
sa densité spectrale vaut : I'(f) = 1.

Pour tout k € Z, on note v, (k) = E{z,x,_} la fonction d’autocorrélation de (z,,)necz et on rappelle
que la densité spectrale de (zy)nez est définie par : To(f) = Y0z Ve (k)e ™27

Quelle est la réponse fréquentielle H(f) du filtre H[z] ? Calculer la densité spectrale I'y(f) du signal
(yn)nez en sortie du filtre (il est inutile de passer par le calcul de 'autocorrélation).

Que vaut la fonction d’autocorrélation du signal (z,,)nez ? Calculer vy, (k), k € Z (on pourra utiliser
le fait que les fonctions d’autocorrélation en entrée et sortie du filtre sont liées par la convolution
vy (k) = vn(k) * vz (k) o y,(k) est I'autocorrélation en énergie de la réponse impulsionnelle du
filtre).

Calculer la réponse impulsionnelle du filtre anti-causal admettant H[z] comme transformée en z
sur un domaine de convergence & préciser.

Réponses exercice: 44

. H[z] = 17;271 sur le domaine de convergence {z € C | |z| > |a|}. Le filtre est donc stable (car |a| < 1).
. Un développement de H|z] en série sur le domaine de convergence donne immédiatement :

a™ sin >0,
hn:: .
0 sin <0,

La réponse fréquentielle est donnée par H(f) = H[e?™f] =
par :

717%1,‘2,# . La densité spectrale en sortie est alors donnée

1
1+ a2 — 2acos(2r f)

Ly(f) = [H()I*T=(f) =

La fonction d’autocorrélation de (zn)nez correspond aux coefficients du développement en série de Fourier de I'z(f)
et on a donc immédiatement : v; (k) = § (impulsion unité égale & 1 si k = 0 et 0 sinon). Il vient alors :y, (k) =
Yn (k) * vz (k) = vn (k) et pour k > 0 on peut faire le calcul :

k

(k) = zn:hnhn,k = Z a¥a" "k =gk Z a®" = 1 i 2

n>k n>0

alkl
1—a?”

En utilisant la symétrie, on conclut finalement : vy, (k) =

Le filtre anti-causal admettant H|[z] comme transformée en z est celui correspondant au domaine de convergence
{z € C| |z] < |a|} de H][z]. Or pour tout z dans ce domaine — > n<_1a"z"™ et la réponse impulsionnelle
du filtre anti-causal de transformée en z H|z] est donc :

~ 0 sin >0,
hn: n .
—a™ sin<O0,

71 =
' 1—az—1

Exercice 45: signal aléatoire sinusoidal bruité, filtrage On considére le signal & temps discret
T = acos(2mfon) + b, ot @ > 0 et fo €]0,1/2] sont des constantes, ¢ est une variable aléatoire
uniformément répartie sur l'intervalle [0, 27] et b,, est un bruit blanc (centré) de puissance E{b2} =
o?. Les deux processus a cos(27 fon + ¢) et b, sont supposés indépendants.

Montrer que le signal x,, est stationnaire au sens large.

Vérifier que pour f € [—1/2,1/2], la densité spectrale de puissance de x,, s’écrit :

I(f) = %2 (6(f — fo) +0(f + fo)) + 0> sur lintervalle [-1/2,1/2].

Pour cela, on rappellera ’expression de autocorrélation v, (k) en fonction de la densité spectrale
de puissance I',, (f) (On manipulera la masse de Dirac §(.) selon les régles «usuelles» et sans aucune justification

demandée.)

Pourriez-vous donner, en justifiant, I’expression de I';.(f) sur U'intervalle [0,1] ?
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Le signal x,, est appliqué en entrée d’un filtre dont la réponse en fréquence vaut :
1 sifel-a,q] (avec 0 < fo < < 1/2),
H(f) = :
0 sinon.

Calculer la puissance du signal y,, en sortie du filtre.

Réponses exercice: 45

En utilisant ’indépendance des termes croisés et le fait que le bruit est centré, il vient :

E{znzn_} = E{a? cos(2m fon + ¢) cos(2nfo(n — k) + ¢)} + E{bnb,_1}
a2
= E{; (COS(QTK‘fO(Qn —k)+2¢) + cos(27rfok)>} + E{bnby_r}

¢ étant uniformément distribuée sur [0, 27| et by, étant blanc, le signal est stationnaire de fonction d’autocorrélation :

2
vz (k) = % cos(2m fok) 4+ 028,

vz (k) et T (f) sont liées par transformée de Fourier (temps discret) et on a :
1/2 .
1) = [ Ta(er o
—1/2
La densité spectrale de puissance est la transformée de Fourier de ’expression précédente :
a? 9
Pa(f) = - (6(f = fo) +6(F + fo)) + o
Compte tenu de la 1-périodicité de I'z(f),
2

Ta(f) = “z (5(f — fo) + 6(f — 1+ fo)) + o2 sur intervalle [0, 1].

La densité spectrale de yn, vaut T'y(f) = |H(f)|?Tx(f) et la puissance de y», s’en déduit :

1/2 o 2
= [ 0= [ raa =G 2o

Exercice 46: effacement d’une série harmonique Dans tout ’exercice, n désigne un entier

n € Z. Pour p € {1,..., M}, soient f, des raies (cad des fréquences fixées) dans ] — 1, 1] et u,, des
variables aléatoires centrées et décorrélées. On définit le signal aléatoire :
M
ra =Y e (12)
p=1

Justifier que z,, est un signal aléatoire stationnaire au sens large et, pour k € Z, calculer son
auto-corrélation v, (k).

On admet que, pour x,, on peut écrire symboliquement une densité spectrale de puissance I',(f)
sous la forme I',(f) = 21]7\4:1 O’Zp(;( f — fp). Justifier rapidement cette écriture et préciser la valeur
des aip (seule une écriture symbolique correcte est demandée ici, sans autre justification).

Remarque : §(f — fp.) représente une masse de Dirac en la fréquence f = f, et se manipulera selon les régles
«usuelles». En cas de souci de rigueur, on pourra remarquer que ’écriture proposée de I'x(f) correspond a la mesure

spectrale de puissance de x,.

On considére un filtre donné par sa fonction de transfert en z :

M

Hlzl =[] —e? 2z

p=1
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(a) S’agit-il d’un filtre de réponse impulsionnelle finie ou infinie ?
(b) Préciser la réponse en fréquence H(f) du filtre étudié et montrer qu’elle s’annule en les fré-
quences fp,p € {1,...,M}.

On note y, le signal aléatoire issu du filtre H|[z] lorsque le signal z,, défini a ’équation (12) ci-dessus
est appliqué en entrée.

(a) Que vaut la densité spectrale de y,, ? Que vaut la puissance de y,, ?
(b) En déduire ce que vaut y,.

On écrit H|[z] sous la forme H[z] =1 — Z;w:l apz~P ol pour tout p, a, est un coefficient que I'on
peut exprimer en fonction des fréquences f, (non demandé).

(a) Donner la réponse impulsionnelle h,, du filtre H[z] en fonction des coefficient ap,p € {1,..., M}.
(b) Déduire de la question 4 une relation de récurrence vérifiée par le signal z,,.

Réponses exercice: 46

. Puisque les up sont décorrélées et centrées, on peut faire les calculs ci-dessous, qui justifient la stationnarité au sens

large :
M .
E{z,} =0 Yo (k) 2 B{znal ) = Z O.ipel%'rkfp
p=1

ou l'on a définit aip 2 E{[up|?}.

. On vérifie que ’écriture symbolique de transformée de Fourier inverse & temps discret de I';(f) redonne l'auto-

corrélation ci-dessus.

(a) Réponse impulsionnelle finie.
(b) H(f) = 21:1(1 — €27fpe=27f) Cette réponse en fréquence s’annule bien pour f = f, que que soit p €
{1,...,M}.

(a) Ty(f) =0 et la puissance est donc E{|yn|?} = 0.
(b) yn =0.

(a)

1 sin =0,
hn=4¢ —ap sil<n<M,
0 sinon.

(b) Comme y, =0,0n a: z, = Zﬁil ApTn—p.

Exercice 47: prédiction linéaire Pour des variables aléatoires réelles de carré sommable, on
définit le produit scalaire par :
(X,Y) = E{XY}

ot E{.} désigne l'espérance mathématique. On considére (xy)rez un signal aléatoire réel, centré,
stationnaire au sens large, et dont la fonction d’autocorrélation (R, (k))rez est supposée connue.
Soient enfin n et m fixés, n € Z et m € N. Cet exercice a pour but, dans deux cas particuliers, de
déterminer une prédiction de x,,, notée Z,, qui minimise 'erreur quadratique :

E L E{(iy — )%} (13)
Nous recherchons dans un premier temps z,, comme la meilleure prédiction linéaire de z,, a partir
de ., ; c’est-a-dire que 'on cherche z,, sous la forme : &,, = Ax,_,, ot A € R.

(a) Exprimer lerreur £ de ’équation (13) sous la forme d’un polyndéme du second degré en A.
En déduire la valeur optimale de A\ permettant de minimiser I'erreur quadratique ainsi que
I’expression de Z,, correspondante.

(b) Retrouver le résultat précédent en interprétant £ comme une norme au carré et &, comme
une projection orthogonale.
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Nous cherchons maintenant Z,, comme la meilleure prédiction linéaire de x,, a partir des x,,_, k =
1,...,m, c’est a dire que &, s'écrit : &, = >, apTp_k OU les coefficients ax, k = 1,...,m sont
réels.

(a) En vous inspirant de la question 1b, montrer que les coefficients ay, k = 1,...,m satisfont :

vie{l,...,m} iakRz(kfl):Rz(l).
k=1

(b) En déduire que les ag,k = 1,...,m sont solutions d’un systéme linéaire qui s’écrit sous la
forme (on précisera les valeurs de ¢, c1, ..., Cm—1,Cm) :
Co C1 oo Cm—1 ay c1
c1 co - Cm—2 L N
Cm—1 ... C1 Co am Cm

Réponses exercice: 47
(a) &= A2R,(0) — 2ARz(m) + Rz (0) et donc : &, = %xn_m.
(b) Ecrire lorthogonalité entre ’erreur et I’espace sur lequel on projette : (£n — Tn, Tn—m) = 0.

(a) De méme qu’en 1b, écrire que l'on a VI € {1,...,m},(Zn — Zn,Tn—;) = 0. Le résultat est immédiat en
remplacant &, = 22”21 apTy,_p et en utilisant la linéarité du produit scalaire.

(b) Simple traduction des équations de la question précédente : VI, ¢; = Ry ().

Exercice 48: filtre adapté (temps discret)
Les différentes quantités et signaux de cet exercice sont supposés a valeurs dans R.

On considére un signal déterministe & temps discret supposé donné (s, )nez. Ce signal modélise
une impulsion qui, selon le cas est ou n’est pas transmise dans un canal. Au cours de la transmission
s’ajoute une perturbation de type bruit additif (cette description correspond par exemple au cas
d’un radar /sonar ot le signal émis est renvoyé ou non selon la présence ou ’absence de cible). Ainsi,
si Pon note (b, )nez un bruit blanc centré, on observe en réception :

v Ty = Sn + b, sile signal est transmis,
n

Ty = by si le signal n’est pas transmis.

Le signal (2, )nez en réception est filtré par un filtre de réponse impulsionnelle (h,,),cz donnant
ainsi le signal (yn)nez.
D’aprés les hypothéses :
(a) Préciser si le signal (z,,)nez est aléatoire ou déterministe. Méme question pour (hy)nez.
(b) Pour p € Z, préciser comment s’écrit y, en fonction des signaux (zn)nez €t (An)nez.

Pour p € Z, en déduire E{y,} selon si le signal (s, )nez est transmis ou ne l’est pas.

On s’intéresse au probléme de détection qui consiste & décider la présence ou non du signal (s, )nez
a un instant p € Z donné. Pour cela, la valeur de y, est comparée & un seuil.

Dans cette question, on souhaite déterminer le filtre (hy,,)necz qui permettra de faciliter au mieux le
probléme de détection. On suppose a partir de maintenant que (s, )nez est transmis.

(a) Justifier qu’on souhaite alors maximiser la quantité suivante, appelée rapport signal sur bruit :

_ E{yp}2
p= Var{y,}
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(b) On note o7 la puissance du bruit (b, ),ez. Calculer Var{y,}.
(c) Rappeler expression de I'énergie F, du signal (s, )nez et déduire de ce qui précede que :

E
g

p<

SN

(d) Montrer que la borne ci-dessus est atteinte lorsque le filtre (hy,)nez est tel que by, = Asp_,, ol
A # 0 est une constante que 'on peut choisir librement. Le filtre ainsi déterminé est appelé
filtre adapté.

Réponses exercice: 48

1. (a) (#zn)nez est aléatoire; (hn)nez est déterministe.

(b) yp = P pezheTp_k = 2 pez hp—kar donc yp = >, 7 hiby_y en absence de signal et yp = >, cp hrsp_k +
ZkeZ hibp_ en présence de signal.

2. Comme le bruit est centré, E{yp} = 0 en 'absence de signal et E{yp} = > ; 7 hxsp—k en présence de signal.

3. (a) Pour détecter la présence du signal (sp)nez, on compare la valeur de yp & un seuil. Or y;, est une variable
aléatoire, de moyenne E{y,} (nulle si absence du signal et non nulle si présence de (sn)ncz) et variance
Var{yp} : pour faciliter la détection, il est naturel de souhaiter minimiser la variance de cette variable aléatoire
et maximiser sa valeur moyenne en présence du signal & détecter.

(b) Var{yp} = Ug Pkez |hi|?
(c) Il suffit d’appliquer I'inégalité de Cauchy-Schwarz et se rappeler que Es = > |sn|2.
(d) 1l s’agit du cas d’égalité de I'inégalité de Cauchy-Schwarz.
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46



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

January 30, 2026 47

. Qu’appelle-t-on un filtre en théorie du signal ? Quelle est la relation entrée-sortie qui correspond ?
. A quelle(s) condition(s) dit-on qu'un signal aléatoire est stationnaire/ergodique ?
. Qu’appelle-t-on réponse impulsionnelle d’un filtre ?

. Rappeler le critére dit de Shannon du théoréme d’échantillonnage (appelé aussi critére de Shannon-

Nyquist selon les usages).

. Rappeler la définition de la puissance et de I’énergie d’un signal déterministe.

. Soit y(t) un signal provenant du filtrage d’un signal x(¢) par un filtre de réponse en fréquence H(f).

Quel lien existe-t-il entre les densités spectrales de puissance de x(t) et y(t)?

. Résumer en quelques mots l'effet d’un échantillonnage sur le spectre d’un signal. Quelle est la

condition d’échantillonnage d’un signal passe-bas qui en résulte, si 'on souhaite ne pas perdre
d’information au cours de I’échantillonnage ?

. Comment se définit un filtre en traitement du signal ? Si (hy)kez est la réponse impulsionnelle d’un

filtre & temps discret, quelle est la relation entrée-sortie correspondante 7

. Qu’est-ce que le procédé de modulation 7 Qu’appelle-t-on porteuse dans la modulation ?

Rappeler la définition de 'autocorrélation d’un signal déterministe respectivement d’énergie finie /
de puissance finie.

Rappeler la définition de la propriété de causalité d’un filtre. Donner une condition nécessaire et
suffisante sur la réponse impulsionnelle d’un filtre pour qu’il soit causal.

A quelle condition est-il théoriquement possible de reconstruire sans erreur un signal & temps continu
a partir de ses échantillons prélevés a une fréquence f. 7

Quelle est la définition de la transformée en z d’un signal & temps discret et quel lien existe-t-il
entre la transformée en z et la transformée de Fourier & temps discret 7

Qu’appelle-t-on signal & bande étroite 7 Donner un exemple classique.
Définir les notions de signal aléatoire et signal déterministe.

Comment se définit la densité spectrale de puissance ? Quel est le lien entre puissance et densité
spectrale de puissance 7

Comment s’écrit la fonction de transfert en z d’un filtre numérique lorsque celui-ci est de réponse
impulsionnelle finie (filtre transverse) ? Quelle est la relation correspondante qui permet de calculer
la sortie ?

Quelle est la définition du signal analytique associé a un signal réel z(t) ?
Définir ce qu’on appelle un signal quantifié et un signal échantillonné.

Comment s’écrit la fonction de transfert en z d’un filtre purement récursif (ou filtre AR : auto-
régressif) ? Quelle est la relation correspondante qui permet de calculer la sortie ?

Comment se définit la transformée de Fourier a temps discret (TFTD) d’un signal (temps discret)
(xn)neZ-

Quel est le lien entre la TFTD définie a la question précédente et la transformée de Fourier discréte
(TFD) ? Qu’est-ce que la «<FFT» ?

Quelle est la définition de l'intercorrélation 7y, (7) de deux signaux déterministes, & temps continu
et de puissance finie (non nulle) ?
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Comment se définit la densité spectrale de puissance pour un signal aléatoire 7 Quel est le lien entre
puissance et densité spectrale de puissance ?

Qu’est-ce qu'un bruit blanc? On précisera ce que valent la densité spectrale et ’autocorrélation
d’un bruit blanc.

Qu’est-ce que le procédé de modulation ? Préciser si les signaux appelés porteuse et modulante sont
haute ou basse fréquence.

Quel nom donne-t-on & un signal aléatoire centré dont la densité spectrale de puissance est constante 7
Comment s’exprime ’autocorrélation d’un tel signal ?

Quelle est la définition de l'intercorrélation -y, (k) de deux signaux déterministes, & temps discret
et d’énergie finie 7

Soit y(t) un signal provenant du filtrage d’un signal z(¢) par un filtre de réponse en fréquence H (f).
Quel lien existe-t-il entre les densités spectrales de puissance I';(f) et T'y(f) des deux signaux en
question ?

Soit h(t) un signal déterministe. Comment s’appelle 'opération qui & un signal (t) associe le signal
y(t) = h(t) x z(t) (ou » désigne le produit de convolution) ? Rappeler I'écriture de y(t) sous forme
d’intégrale.

Comment se définit I’enveloppe complexe d’un signal a bande étroite x(¢t) ? Un petit schéma dans
le domaine des fréquences pourra étre utile.

Que peut-on dire de la transformée de Fourier de signaux échantillonnés? de la transformée de
Fourier de signaux périodiques ?

Le signal analytique associé & un signal a valeurs réelles est-il a valeurs réelles ou complexes?
Justifier.

Donner la forme générale de la fonction de transfert en z d’un filtre purement récursif (ou filtre
AR : auto-régressif). Quelle est I'équation temporelle donnant la sortie en fonction de 'entrée ?

Que peut-on dire du domaine de convergence de la fonction de transfert en z d’un filtre causal ?
Faire un schéma.

Comment un signal aléatoire se définit-il mathématiquement ? Qu’appelle-t-on trajectoire d’un si-
gnal aléatoire 7

Quelle est le nom donné a un signal aléatoire stationnaire (sens large) dont la densité spectrale de
puissance est constante ?

Qu’appelle-t-on algorithme de transformée de Fourier rapide (FFT) ? Préciser le produit matriciel
effectué et la (ou les) condition(s) pour que cet algorithme puisse étre utilisé.

Si X|[z] est la transformée en z du signal a temps discret x,, de quel signal 271 X|[z] est-il la
transformée en z 7 Quel nom donne-t-on en général & cette propriété ?

Rappeler la propriété appelée «théoréme du retard» vérifiée par la transformée en z.

Citer deux exemples connus (donnés en cours) de signaux aléatoires dont les accroissements sont
indépendants.

A quelle condition dit-on d’un signal stationnaire qu’il est ergodique 7

Pour un signal aléatoire, rappeler a quelle(s) condition(s) il est stationnaire au sens large.
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A quelles fréquences f. peut-on échantillonner un signal de bande limitée [—B, B] sans perdre
d’information ? A quel(s) nom(s) est généralement associé ce résultat ?

Donner le signal analytique, la transformée de Hilbert et ’enveloppe complexe du signal x(t) =
cos(2m fot) (ou fo est une fréquence fixe donnée).

Pour un signal aléatoire a temps discret, stationnaire au sens large, donner, en précisant la formule
utilisée pour la transformée de Fourier, la définition de :

(i) sa fonction d’auto-corrélation,
(ii) sa densité spectrale de puissance.

Soit x(t) un signal déterministe & temps continu de transformée de Fourier X (f). Donner deux
expressions de son énergie, en fonction de z(t) et de X (f). Quel nom donne-t-on au lien entre ces
deux expressions de ’énergie 7

Etant donné un signal temps continu z(t), le signal échantillonné qui lui est associé est défini
en annexe par x.(t) 2 z(t)Illz, (t). Sachant que T, est la période d’é¢chantillonnage, préciser ce
que signifie cette notation (en particulier Ilz, (t)) et donner I'expression de z(t) en fonction des
échantillons (z(kTe))kez.

Donner la forme générale de la fonction de transfert en z d’un filtre MA (moving average, appelé
aussi moyenne mobile).

Notons h(t) la sortie d’un filtre lorsqu’il est attaqué en entrée par un Dirac 0(t). Quel est le lien
entre h(t) et la réponse en fréquence ? Quel nom donne-t-on a h(t) ?

Soit z(t) est un signal haute-fréquence (autour d’une fréquence fy), & valeurs réelles dont la trans-
formée de Fourier est notée X (f). Soit un filtre haute-fréquence de réponse en fréquence H(f) et
soit H(f) le filtre passe-bas équivalent. Donner le lien entre :

— Dentrée et la sortie du filtre, notée y(t) (de transformée de Fourier Y (f)).

— les enveloppes complexes en entrée et sortie du filtre (notées &, (t), &, () respectivement et de
transformées de Fourier Z,(f), Z,(f))-

Pour un signal aléatoire, comment définit-on la densité spectrale de puissance ? Peut-on définir la
transformée de Fourier d’une trajectoire et, si oui, préciser alors le lien avec la densité spectrale de
puissance.

Pour un filtre dont la transformée en z est une fraction rationnelle : a quelle condition sur les poles
le filtre est-il stable et causal 7

Pour deux signaux d’énergie finie x(t) et y(t), rappeler la définition de leur intercorrélation g, (7).
Exprimer ensuite ’ygy(T) comme un produit de convolution de deux signaux que ’on précisera
clairement.

Soit (zn)nez un signal a temps discret d’énergie finie et X (f) sa transformée de Fourier & temps
discret. Donner deux expressions de I’énergie de ce signal, I'une en fonction de x,, I’autre en fonction
de X(f) (préciser les bornes des intégrales et des sommes).

y(t) est un signal bande étroite (bande centrée autour d’une fréquence fp) issu du filtrage d’un signal
x(t) également bande étroite par un filtre de réponse en fréquence H(f). Définir le filtre passe-bas
équivalent et donner la relation entre les transformées de Fourier Z,(f) et E,(f) des enveloppes
complexes de z(t) et y(t) respectivement.
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Soit (hp)nez la réponse impulsionnelle d’un filtre & temps discret. Donner une condition nécessaire
sur cette derniére pour que le filtre soit :

(a) stable,
(b) causal.

Soit (2 )nez un bruit blanc centré a temps discret. Rappeler la définition de 'auto-corrélation 7, (k)
de ce signal et préciser ce qu’elle vaut. Que peut-on dire de la densité spectrale de puissance ?

. On définit le signal z(t) par :

a(t) =Y M, (t—nT)

nez

ot : T > 7 sont deux réels positifs et I, désigne une porte de largeur 7 (IL-(t) = 1 si |[t| < 7/2 et O
sinon). Rappeler le calcul de la transformée de Fourier de ce signal que vous avez étudié en TP.

. Supposons qu'un vecteur d’échantillons soit stocké sous la variable x dans ’environnement MATLAB

. On souhaite obtenir une image du spectre en amplitude du signal x : sur ’axe horizontal doit
apparaitre une graduation correcte de la fréquence réduite (ou normalisée) sur Uintervalle [0, 1].
Compléter les lignes de code suivantes et préciser les valeurs que contiendra la variable freq :

N = length(x);

X = abs(fft(x));

freq = %% completer cette ligne %%%
plot(freq,X);

. Supposons qu'un vecteur d’échantillons soit stocké sous la variable x dans ’environnement MATLAB

. Ce vecteur provient de I’échantillonnage & la fréquence F, = 44kHz d’un signal sonore. On sou-
haite obtenir une image du spectre en amplitude du signal x : sur I’axe horizontal doit apparaitre
une graduation correcte de la fréquence réelle sur U'intervalle [0, F.]. Compléter les lignes de code
suivantes :

Fe = 44000;

N = length(x);

X = abs(fft(x));

freq = XXX; %Ah)% compléter cette ligne en remplacant convenablement XXX %%%
plot(freq,X);

. Nous rappelons que 'algorithme le plus classique pour calculer une transformée de Fourier rapide

(algorithme «FFT» de Cooley-Tuckey) nécessite que le nombre de points soit une puissance de 2. Si
I'on tape ££t([1 0 0]), le logiciel MATLAB renverra-t-il une erreur 7 A défaut, préciser exactement
ce qui sera renvoyé (avec valeur numérique).

. Sous MATLAB , on suppose que x est un vecteur contenant les échantillons d’un signal. Quelle est la

fonction de transfert en z du filtre appliqué au signal x lorsque 'on tape : filter([1 -1],1,x) 7

. Nous rappelons que ’algorithme le plus classique pour calculer une transformée de Fourier rapide

(algorithme «FFT» de Cooley-Tuckey) nécessite que le nombre de points soit une puissance de 2. Si
l'on tape ££t([1 1 11), le logiciel MATLAB renverra-t-il une erreur 7 A défaut, préciser exactement
ce qui sera renvoyé (avec valeur numeérique).

ﬁ . Sous
MATLAB , on suppose stocké dans une variable x les échantillons d’un signal. Donner la commande
MATLAB qui permettra de filtrer les échantillons dans x par H|z].
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1. On considére le signal a temps discret (z,,)nez et le vecteur x = (xg,...,xn—_1) constitué de N
échantillons. (z,)nez n’est pas nul en dehors de ces N échantillons. La transformée de Fourier
discréte du vecteur x :

F est définie par :

X(f) — anefi%rfn

nez
N-1

évalue les valeurs de la fonction X (f) = E zpe 2" pour f prenant respectivement les
n=0

valeurs 0, %, %, ceey %

F ne peut se calculer que si N est une puissance de 2.

évalue la transformée de Fourier & temps discret de (2, )nez pour des fréquences discrétes. Les
fréquences étant discrétes, (x,)nez est un signal périodique.

2. La fonction d’autocorrélation +,(7),7 € R (en énergie ou puissance) d’un signal & temps continu
z(t),t eR:

F

est toujours une fonction périodique,

'V peut étre une fonction périodique selon le signal x(t),

F
F

vérifie pour tout 7 : v, (7) > 0,

est définie comme le module au carré de la transformée de Fourier de z(t).

3. On peut observer un phénoméne d’élargissement des raies spectrales :

F
F
Vv

F

uniquement lorsque le principe d’incertitude de Heisenberg n’est pas contredit par le signal.
lorsque la fréquence d’échantillonnage est mal choisie.

de fagon générale lors de la troncature temporelle d’'un signal comportant des raies dans son
spectre.

uniquement lorsque le signal étudié est une sinusoide convoluée avec une porte.

TF,

4. Soit x(t) un signal et X (f) sa transformée de Fourier (ce que I'on note par : 2(t) — X (f)). Alors :

Vv
F
F
Vv

2(t)e ™t =5 X(f — fo)
w(t +1o) — X(fto)
x(at) 15 aX (af)

si x(t) est réel, alors X (f) = X(—f)*.
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5. Un signal sinusoidal pur de fréquence 418Hz est échantillonné. La durée entre deux échantillons est
de 20ms.

F La condition d’échantillonnage de Shannon est respectée.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
une raie est repliée & 20Hz.

V La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
une raie est repliée & 18Hz.

F La transformée de Fourier a temps discret du signal échantillonné n’est pas définie car la
condition d’échantillonnage n’est pas respectée.

6. Le domaine de convergence de la transformée en z d’un signal (z,)nez & temps discret :

F est C tout entier, sauf pour quelques cas particuliers,

F n’est pas fondamental car les filtres que 'on considére sont souvent rationnels et n’ont donc
qu’un nombre fini de pdles,

V est important, car deux fonctions de la variable complexe z ayant la méme expression mais dé-
finies sur des domaines de convergence distincts peuvent étre les transformées de deux signaux
a temps discret distincts,

F doit contenir le cercle unité pour que le signal (z,,)nez existe.

7. Un filtre numérique rationnel défini par sa fonction de transfert en z H|[z] ou par sa réponse impul-
sionnelle (h,,)ez est stable si et seulement si :

F le domaine de convergence de H|[z] est du type {z € C||z| > R}, ou R € R},
F les poles de H|[z] sont & partie réelle négative,
F la réponse impulsionnelle est bornée (cad il existe M € R tel que pour tout n, |hy,| < M),

V S |hel est fini.

8. Soit z(t) un signal réel et X (f) sa transformée de Fourier. Rappelons que le signal analytique z(t)
associé au signal réel x(t) peut étre défini par sa transformée de Fourier :

2X(f) sif>0,

X"(f){o si f < 0.

F La transformation de x(t) en signal analytique x,(t) est indispensable avant toute analyse a
I’analyseur de spectre car seules les fréquences positives existent.

F Le signal analytique z,(t) est un signal réel.
V Le signal analytique x,(t) est un signal complexe.

F Le signal analytique z,(t) peut étre réel ou complexe, celd dépend du signal z(t).
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9. L’algorithme de transformée de Fourier rapide (FFT) :

F est un algorithme rapide qui permet de calculer la transformée de Fourier discréte ; il s’applique
dés que le nombre d’échantillons est pair.

V est un algorithme rapide qui permet de calculer la transformée de Fourier discréte ; il s’applique
lorsque le nombre d’échantillons est une puissance de deux.

F est un algorithme rapide pour le calcul du produit matriciel de I’équation (14) ci-dessous ou
Z1,...,2xn sont N échantillons; I'algorithme s’applique dés que N est pair.

V est un algorithme rapide pour le calcul du produit matriciel de I’équation (14) ci-dessous ou

x1,...,xn sont N échantillons; I’algorithme s’applique lorsque N est une puissance de deux.
1 1 1 1 1 1
1 w w? e whN =1 To

w? w w? =D T3 avec : w = ' *™/N (14)
1 wN-1 2W-1) .. =12 TN

10. Un signal sinusoidal pur de fréquence 4135Hz est échantillonné. La durée entre deux échantillons
consécutifs est de 0.5ms.

V La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée & 1865Hz.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée a 1135Hz.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée & 865Hz.

F La condition d’échantillonnage de Shannon est respectée.
11. Le systéme L : z(t) — y(t) = fiaﬂx(@) df o> 0:
F est un filtre dont la réponse impulsionnelle ne s’annule jamais.
F est non linéaire.
F est non invariant dans le temps.

V est un filtre causal.

12. Soient x(t) et y(t) deux signaux & temps continu. On note z(t) = x(t) * y(t) leur produit de

convolution.
V Onaz(t)= [ —0)d6 et aussi 2(t) = [ y(0)x(t — 0) do.
F Ona z( f - — 0) d mais, sauf cas particulier, z(t) # f+oo x(t — 0) do.
F On a z(t ) x(t)y ( ), ce qui est conforme avec le fait que le produit de convolution est
commutatif.
F Onaz(t) = f:r;: x(0)y(0 — t)dl et aussi z(t) = fj;; y(0)x(0 — t) do.
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13. Soit 7, (¢) la fonction d’autocorrélation en puissance d’un signal z(¢) de puissance finie.
F ~;(t) > 0 pour tout t.
. +
F La puissance de de z(t) vaut [~ |y, (t)[* dt.

F La puissance de de z(t) vaut fj:; vz (t) dt.

V 79.(0) > |7, (¢)| pour tout t.

14. Un filtre a temps discret défini par sa réponse impulsionnelle (h;,),ez ou par sa transformée en z
H|z] est stable si et seulement si :

F le domaine de convergence de H|[z] est un disque de rayon R € R%.
F le domaine de convergence de H|[z] est du type {z € C | [z| > R}, ot R € R..
V lensemble {z € C | |z| =1} est inclus dans le domaine de convergence de H|[z].

F lim, o hn = 0.

15. Siz = [1 -2 3 -4 5 —6 5 72] et si on note X = [Xo X ... Xﬂ la transformée de
Fourier discréte de la suite d’échantillons contenus dans le vecteur z, que vaut X ?
F +v2—i2n
F —V2+i2m
Vo
F 8

16. Dans une modulation :

F Le signal qui contient 'information en bande de base est appelé porteuse.

V' Le signal qui contient 'information en bande de base est appelé signal modulant.

F Le signal modulé est une sinusoide pure.

F Le signal modulé est toujours obtenu a partir de la transformée de Hilbert du signal modulant.
17. La transformée de Fourier a temps discret

V est périodique de période 1.

F n’est définie que pour un ensemble fini de fréquences.

F n’a de sens que pour un signal de durée finie.

F n’a de sens que pour un signal de période 1.
18. Un filtre a temps continu est stable au sens entrée bornée-sortie bornée si et seulement si :

F la réponse & un Dirac en entrée est de durée finie.

V sa réponse impulsionnelle h(t) satisfait : fj;j |h(t)| dt < +oc.

F sa réponse impulsionnelle h(t) satisfait : fj:j |h(t)|? dt < +o0.

F sa réponse impulsionnelle h(t) satisfait : lims—, oo h(¢) = 0.
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19. Soit z(t) un signal déterministe d’énergie finie, X (f) sa transformée de Fourier et I';(f) sa densité
spectrale d’énergie.

V Ona:VfeR T.(f)=|X(f)%
F Ona:VfeR T.(f)=|X(f).

V On a l'égalité : /OO lz(t))? dt = /OO L. (f)df.

—0o0 —oo
F T, (f) est toujours maximal en 0.
20. Le domaine de convergence de la transformée en z d’un signal z,,n € Z a temps discret :

F donne une indication sur 'inversibilité de la transformée en z : le cercle unité doit en effet
appartenir au domaine de convergence.

F est vide sauf pour des signaux de durée finie.
n’a aucun intérét puisque seule ’expression de la transformée en z nous intéresse.

est important car une méme fonction de la variable complexe z considérée sur des domaines de
convergence distincts peut étre la transformée en z de deux signaux & temps discret distincts.

21. La formule d’interpolation d’un signal & bande limitée :

F est une approximation qui permet d’approcher les valeurs du signal entre les échantillons.

V est une égalité; la reconstruction exacte du signal entre deux échantillons est possible en
théorie.

F ne fait intervenir que les échantillons passés du signal car un filtre de restitution doit étre
causal.

F n’est valable que pour des signaux périodiques.

22. Un filtre a réponse impulsionnelle finie est aussi appelé :
V filtre transverse.
F filtre récursif.
F filtre & causalité finie.

F filtre & poles positifs.
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23. On considére l'opération qui a un signal & temps continu x(t) associe le signal y(¢) défini par :

t+a
y(t) = / x(0) do avec a > 0.
¢

F C’est une opération de filtrage par un filtre non causal dont la réponse impulsionnelle est
donnée par :

h(6) = {z(o) sifeltt+a

0 sinon.

F C’est une opération de filtrage par un filtre causal dont la réponse impulsionnelle est donnée
par :

h(6) = {x(@) sifeltt+al

0 sinon.

V C’est une opération de filtrage par un filtre non causal dont la réponse impulsionnelle est

d()nnée par .

0 sinon.

F C’est une opération de filtrage par un filtre causal dont la réponse impulsionnelle est donnée

par :
h(@):{l sif e [—a,0]

0 sinon.

24. Soit T € Ry et pr(t) le signal porte défini par pr(t) = 1 sit € [-T/2,T/2] et pr(t) = 0 si
t ¢ [-T/2,T/2]. La transformée de Fourier Pr(f) de pp(t) :

F n’est pas dérivable car le signal pr(t) n’est pas continu.

+oo
V vérifie I'égalité :/ |Pr(f)|?df =T
— 00
F est a valeurs complexes (et non pas réelles), comme c’est le cas pour toutes les transformées
de Fourier.

sin(m fT)

2
T > si f#0et Pr(0)=1.

F vaut : Pr(f) T(
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25. Soit z(t) un signal a bande limitée, dont le support de la transformée de Fourier est inclus dans
[ B, B]; soit h(t) la réponse impulsionnelle d’un filtre quelconque. Soit y(t) la sortie de ce filtre
excité par x(t).

V y(t) est un signal & bande limitée.

F si T est une période d’échantillonnage telle que 1/7 > 2B, alors le signal a temps discret
(y(nT)) coincide avec la version filtrée de (x(nT)), la réponse impulsionnelle du filtre numé-
rique dont il est question étant (h(nT)).

F puisque y(t) = / h(T)z(t — 7)dr, on peut toujours écrire, quel que soit T > 0 :
R

y(nT) = h(kT)x(nT — kT)
keZ

F y(t) est un signal causal car obtenu par une opération de filtrage.

26. Soient les signaux & valeurs complexes 1 (t) = €271t et z9(t) = €27f2¢ ou les fréquences fi et
f2 valent f1 = —418Hz et fo = 582Hz. x1(t) et x2(t) sont tous deux échantillonnés aux instants
nT,,n € 7Z, avec une durée T, = 1ms entre deux échantillons.

F La condition d’échantillonnage de Shannon-Nyquist n’est pas vérifiée pour z1(t) et est vérifiée
pour z3(t). De plus, pour tout n € Z, on a : x1(nT,) = z2(nTe).

V La condition d’échantillonnage de Shannon-Nyquist est vérifiée pour 1 (t) et n’est pas vérifiée
pour z3(t). De plus, pour tout n € Z, on a : 21 (nT,) = z2(nT).

F La condition d’échantillonnage de Shannon-Nyquist n’est vérifiée ni pour 1 (t), ni pour xa(t).

F L’affirmation «x1(nT.) = z2(nTe) pour tout n € Z» est inexacte car la condition d’échan-
tillonnage de Shannon-Nyquist est vérifiée pour z1(¢) et x2(t).

27. Un filtre numérique rationnel défini par sa fonction de transfert en z H|z] ou par sa réponse impul-
sionnelle (hy,)nez est stable si et seulement si :

F le domaine de convergence de H|[z] est du type {z € C||z| > R}, ot R € R}
F les poles de H|[z] sont & partie réelle négative.
F la réponse impulsionnelle est bornée (cad il existe M € R tel que pour tout n, |h,| < M).

V Tlensemble {z € C/|z| = 1} est inclus dans le domaine de convergence de H|[z].

28. La puissance moyenne d’un signal z(t),t € R :

1 T
V est définie par la limite suivante : lim — lz(t)|? dt.
T—+o0 2T -T

F est infinie si énergie de z(t) est non nulle.
V est nulle lorsque 'énergie de z(t) est finie.

F peut étre négative dans le cas d’un signal complexe.
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29. Soit x(t) un signal déterministe d’énergie finie, X (f) sa transformée de Fourier et I',,(f) sa densité
spectrale d’énergie.

V Lénergie de z(t) vaut / |X (f)]*df.

— 00

F Ona:VfeR Tu(f)=|X(f)
F T'.(f) admet toujours une symétrie hermitienne, cad : Vf e R T'(f) =T(—f)*.

F T'.(f) est toujours maximale en 0.

30. Soit z(t) un signal a temps continu et valeurs réelles, z,(t) son signal analytique associé, Z(t) sa
transformée de Hilbert et &, (t) son enveloppe complexe.

F 2,(t) est a valeurs réelles car son spectre ne contient que des fréquences positives, les seules
qui aient un sens physique.

F £,.(t) est a valeurs complexes tandis que z,(t) est & valeurs réelles.
V Le signal z(t) est la partie réelle de z,(t) et Z(t) est la partie imaginaire de z,(t).

F Z(t) ne peut pas étre la partie imaginaire de z,(t) car Z(t) est un signal a valeurs complexes.

x

Zéros

>
L P Gle\
—02f

Imaginary Part
)

X

-1 -0.5 0 0.5 1
Real Part

FIGURE 6 — Péles et zéros dans le plan complexe du filtre des questions 31 et 32

31. On considére le filtre causal dont la transformée en z est donnée par :

~0,85272 41,2271 41
00,6822 —1,62"1+1

HIz]

Ses zéros et poles sont représentés sur la figure 6 page 59 :
V le filtre H|[z] est de type passe-bas.
F le filtre H[z] est de type passe-bande.
F le filtre H|[z] est de type passe-haut.

F il est impossible d’avoir la moindre idée du comportement de ce filtre & partir des éléments
donnés.



32.

33.

34.

35.

36.
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On considére le méme filtre qu’a la question 31.

V indépendamment des zéros, le filtre H|[z] est stable car ses poles sont de module inférieur a 1.
F indépendamment des poles, le filtre H|[z] est stable car ses zéros sont de module inférieur a 1.
F le filtre H|[z] est stable car ses zéros sont a partie réelle négative.

F le filtre H|[z] est instable car ses poles sont & partie réelle positive.
La transformée de Hilbert du signal :(t) = cos(27 fot) (on fo est une constante positive) :

F vaut z(t) = %(5(f — fo) +6(f + fo)). En effet, on peut écrire a(t) = 3(e'?™fot 4 e=12m/ot) et
on sait que la transformée de Hilbert de I’exponentielle est un Dirac, noté ici d.

F vaut Z(t) = % (6(f —fo) = 0(f + fo)). En effet, on peut écrire z(t) = & (™ot — g=127fol) et
on sait que la transformée de Hilbert de ’exponentielle est un Dirac, noté §.
V vaut 2(t) = sin(27 fot). Le signal analytique associé & x(t) est alors bien e?7fot = 2(¢) +1i2(¢).

V vaut Z(t) = 3(e?mfot=im/2 4 emi2nfottin/2) B effet, on peut écrire z(t) = 3 (e?mfot 4 e~i2mfot)
et on sait que la transformée de Hilbert d’une exponentielle pure est obtenue par un déphasage
pur de —m/2 si pour une fréquence positive et +7/2 pour une fréquence négative.

Un filtre numérique défini par sa fonction de transfert en z H|[z] ou par sa réponse impulsionnelle
(hn)nez est causal si et seulement si :

F h, > 0 pout tout n > 0.
V h, =0 pour tout n < 0.

V le domaine de convergence de H|[z] est du type {z € C | |z| > R}U{o0} (cad le complémentaire
d’un disque centré en 0, point a I'infini compris).

F le domaine de convergence de H|z] est du type {z € C | Ry < |z| < Rz} ou Ry est un réel
positif (cad un anneau compris entre les cercles centrés en 0 et de rayon Ry et Rs).

Soit I';(f) la densité spectrale d’énergie d'un signal z(t).
F L’énergie du signal vaut I';.(0).
F L’énergie du signal vaut |[',(0)2.
V L’énergie du signal vaut [, I'(f) df.
F L’énergie du signal vaut [, [T.(f)|? df.

Le signal z(t) = cos(2mfot) avec fo = 93Hz est échantillonné a la fréquence d’échantillonnage
F. = 100Hz pour former le signal =, = z(#),n € Z.

F Il n’est pas possible de procéder ainsi car 2fy > F. et la condition de Shannon-Nyquist du
théoréme d’échantillonnage n’est pas vérifiée.

F 1l est possible de procéder ainsi car fy < F, et la condition de Shannon-Nyquist du théoréme
d’échantillonnage est vérifiée.

F Indépendamment de fy et F, il est toujours possible de procéder ainsi. Ici, fo < F. et la
condition de Shannon-Nyquist du théoréme d’échantillonnage est donc vérifiée.

V Indépendamment de fy et Fe, il est toujours possible de procéder ainsi. Ici, 2fy > F, et la
condition de Shannon-Nyquist du théoréme d’échantillonnage n’est donc pas vérifiée.
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37. L’algorithme de transformée de Fourier rapide (FFT) :

F est un algorithme rapide basé sur les propriétés fondamentales de la transformée de Fourier
(linéarité, changement de variables, Parseval,...). Il permet le calcul de la transformée de
Fourier des signaux & temps continu.

F est un algorithme rapide basé sur le théoréme des résidus et qui permet le calcul de la trans-
formée de Fourier des signaux & temps continu.

V est un algorithme rapide pour le calcul du produit matriciel de I'équation (15) ci-dessous
lorsque N est une puissance de deux.

1 1 1 1 1 1
1 w w? whN 1 o
1 w2 wh e 2N-1) T3 avec - w — e2™/N (15)
1 wN-1 2IN=1) . ,(N-D)? TN

F est un algorithme rapide basé sur les propriétés du filtrage & temps continu et qui est utilisé
dans les analyseurs de spectre analogiques.

38. La transformée de Fourier & temps discret :
F est obtenue par échantillonnage de la transformée de Fourier & temps continu.
V est définie pour des signaux & temps discret et est périodique de période 1.
F est définie pour des signaux a temps discret et est périodique de période 27.

F est définie pour des signaux périodiques de période 1.

39. Soit 7, (t) la fonction d’autocorrélation en puissance d’un signal x(t) de puissance finie.
F ~;(t) > 0 pour tout t.
F La puissance de z(t) vaut fj:; |y (1) dt.
V ~.(t) peut étre une fonction périodique.
V' 72(0) = |72(#)] pour tout ¢.
40. Soit I';(f) la densité spectrale de puissance d’un signal x(t) de puissance finie.
F T',(0) est égal a la puissance du signal.
V T'.(f) est positif.
FVfeR I.(f)<T.0).
F La puissance du signal vaut [, [T, (f)| df.
41. Pour définir une densité spectrale de puissance d’un signal aléatoire, il faut :
F que toutes ses trajectoires soient d’énergie finie.
V qu’il soit stationnaire au sens large.
F que le module de sa transformée de Fourier soit borné.

F que sa transformée de Fourier soit ergodique.
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42. (yn)nez est la sortie d’un filtre stable de réponse en fréquence H(f) excité en entrée par un signal
(zn)nez aléatoire stationnaire au sens large.

F (yn)nez est un signal aléatoire stationnaire au sens large et sa transformée de Fourier a temps
discret est H(f)X(f) (ot X(f) est la transformée de Fourier du signal aléatoire (2, )nez)-

F (yn)nez est un signal aléatoire déterministe car le filtre est stable et sa transformée de Fourier
a temps discret est H(f)X(f) (on X(f) est la transformée de Fourier du signal aléatoire

(mn)neZ)-

V' (yn)nez est un signal aléatoire stationnaire au sens large et sa densité spectrale de puissance
est |H(f)|?Tx(f) (ot Tx(f) est la densité spectrale de puissance de (r,,)nez)-

F (yn)nez est un signal aléatoire stationnaire au sens large. En tant que signal aléatoire, on ne
peut pas définir sa densité spectrale de puissance.

43. (%n)nez est un bruit blanc de puissance o2 envoyé en entrée d’un filtre stable de réponse impul-

sionnelle (hy,)nez et de réponse en fréquence H(f) .

F La densité spectrale de puissance en sortie est H(f)X (f) ou X (f) est la transformée de Fourier
a temps discret de (zy,)nez.

F La densité spectrale de puissance en sortie est H(f)X (f) ou X (f) est la transformée de Fourier
rapide de (zp,)nez-

V La densité spectrale de puissance en sortie est |H(f)[>02.

F La densité spectrale de puissance en sortie est H(f)o.
44. Un bruit blanc numérique :

V a une densité spectrale de puissance constante.

F a une densité spectrale de puissance égale a un Dirac.

F a pour transformée de Fourier une constante.

F a pour transformée de Fourier un Dirac.

45. La figure 7 représente schématiquement le module de la réponse en fréquence d’un filtre numérique
en fonction de la fréquence normalisée.

[H(f)]

/ \ f (fréq. normalisée)

|
I T

1
FIGURE 7 — Module de ?a réponse en fréquence du filtre question 45

il s’agit d’un filtre passe-bas.
il s’agit d’un filtre passe-haut.

il s’agit d’un filtre passe-bande.

M b < o

il s’agit d’un filtre coupe-bande.
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1 f (fréq. normalisée)
T

1
FIGURE 8 — l\/Podule de la réponse en fréquence du filtre question 46

46. La figure 8 représente schématiquement le module de la réponse en fréquence d’un filtre numérique
en fonction de la fréquence normalisée.

V il s’agit d’un filtre passe-bas.
F il s’agit d'un filtre passe-haut.
F il s’agit d’un filtre passe-bande.

F il s’agit d'un filtre coupe-bande.

47. La figure 9 représente schématiquement le module de la réponse en fréquence d’un filtre numérique
en fonction de la fréquence normalisée.

[H(f)]

f (fréq. normalisée)

|
I T

1
FIGURE 9 — Module de ?a réponse en fréquence du filtre question 47

il s’agit d’un filtre passe-bande et sa réponse impulsionnelle est & valeurs complexes.
il s’agit d’un filtre coupe-bande et sa réponse impulsionnelle est & valeurs réelles.

il s’agit d’un filtre passe-haut et sa réponse impulsionnelle est a valeurs complexes.

M < = o

il s’agit d’un filtre passe-haut et sa réponse impulsionnelle est & valeurs réelles.

48. Soit I';(f) la densité spectrale d’énergie (ou respectivement de puissance) d'un signal z(t).

F L’énergie (ou respectivement la puissance) du signal vaut [ [T, (f)|* df.
V L’énergie (ou respectivement la puissance) du signal vaut [, Tz (f) df-

F L’énergie (ou respectivement la puissance) du signal vaut T',.(0).
( )

F L’énergie (ou respectivement la puissance)du signal vaut |T';(0)|%.

49. Un filtre numérique rationnel défini par sa fonction de transfert en z H|[z] ou par sa réponse impul-
sionnelle (hy,)nez est stable si et seulement si :

F les poles de H|[z] sont & partie réelle négative.
V S0 |hy est fini.

V lensemble {z € C/|z| = 1} est inclus dans le domaine de convergence de H|[z].

F limy o hn = 0.
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50. Pour les signaux aléatoires :

Vv
F
F
F

la stationnarité au sens strict entraine la stationnarité au sens large.
la stationnarité au sens strict entraine ’ergodicité.
la stationnarité au sens large entraine la stationnarité au sens strict.

la stationnarité au sens large et au sens strict entrainent l’ergodicité.

51. L’autocorrélation d’un signal :

F
F
v
Vv

est toujours positive.
est positive par définition.
est définie positive.

présente une symétrie hermitienne.

52. Un filtre numérique défini par sa réponse impulsionnelle (h,),ecz ou sa fonction de transfert en z
H|z] est stable et causal si et seulement si :

Vv
F
A%

F

hy, = 0 pour tout n < 0 et Y, _, |hy,| est fini.

nez

Tous les h,, sont de module inférieur a 1.

Le domaine de convergence de H|[z] est le complémentaire d’un disque et le cercle unité ap-
partient & ce domaine de convergence.

Le domaine de convergence de H|[z] est un disque et le cercle unité appartient & ce domaine
de convergence.

53. L’algorithme de Transformée de Fourier Rapide (ou FFT) :

F
F

F

A%

est un algorithme rapide de calcul de transformée de Fourier & temps continu.

est un algorithme rapide de calcul temps réel de la transformée de Fourier d’un signal analo-
gique.
effectue un produit matriciel de transformée de Fourier discréte lorsque le nombre d’échan-

tillons est un multiple de 2.

effectue un produit matriciel de transformée de Fourier discréte lorsque le nombre d’échan-
tillons est une puissance de 2.

54. Soit un filtre temps continu de réponse impulsionnelle h(t) et de réponse en fréquence H(f). Le
filtre est excité en entrée par un signal aléatoire x(t) stationnaire au sens large et sa sortie est notée

y(t).

F

F

Les transformées de Fourier X (f) et Y (f) des signaux aléatoires x(t) et y(t) sont liées par

Y(f) = H(f)X(f)-

Les transformées de Fourier X (f) et Y (f) des signaux aléatoires x(t) et y(t) sont liées par
Y(f) = H(f) = X(f) ot % représente la convolution.

Les transformées de Fourier X (f) et Y (f) des signaux aléatoires x(t) et y(t) sont égales aux
densités spectrales de puissance respectives et on a Y (f) = |H(f)[?X(f).

On ne peut pas définir de transformée de Fourier des signaux aléatoires x(t) et y(t) dans le
sens usuel (cad tel que rencontré en cours de mathématiques de début d’année).



