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Exercices
(d’après examens des années précédentes)
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Signaux déterministes à temps continu

Exercice 1: distribution de Dirac

1. Pour tout entier n ≥ 1, soit φn(t) = ne−πn2t2 .

(a) Faire un tracé des fonctions φn et donner la limite de la suite de fonctions (φn)n≥1 (convergence
simple).

(b) Montrer que pour toute fonction f bornée et continue en 0, on a

lim
n→+∞

∫

R

φn(t)f(t) dt = f(0) .

2. Pour tout entier n ≥ 1, soit φn(t) = n1[−1/2n,1/2n](t).

(a) Faire un tracé des fonctions φn et donner la limite de la suite de fonctions (φn)n≥1 (convergence
simple).

(b) Montrer que pour toute fonction f continue en 0, on a

lim
n→+∞

∫

R

φn(t)f(t) dt = f(0) .

3. Vérifier que les résultats précédents se généralisent en prenant φn(t) = nφ(nt) dans les cas sui-
vants :

(a) φ : R → R est intégrable,
∫
R
φ(t) dt = 1 et f : R → R est continue et bornée.

(b) φ : R → R est continue, de support borné,
∫
R
φ(t) dt = 1 et f : R → R est continue.

4. Soit la fonction φ(t) = sinπt
πt que l’on suppose prolongée par continuité en zéro et, pour tout entier

n ≥ 1, soient φn(t) = nφ(nt). Nous admettrons (cf. cours de maths) :

• (lemme de Riemann-Lebesgue)
∫ b

a f(t)ei2πnt dt −−−−−→
n→±∞

0 pour toute fonction f intégrable sur

[a, b].

• limM→+∞
∫M

−M
φ(t) dt = 1

On suppose que f est une fonction de support borné telle qu’on peut l’écrire f(t) = f(0) + tg(t)
pour g intégrable (c’est par exemple le cas si f est continûment dérivable). Montrer que :

lim
n→+∞

∫

R

φn(t)f(t) dt = f(0) .

5. Dans tous les cas ci-dessus, on définit δ(t) = limn→+∞ φn(t) qu’on appellera distribution (ou im-
pulsion) de Dirac. C’est là une définition simplifiée et on notera que δ(t) n’est pas une fonction.
La théorie des distributions montre toutefois que δ(t) peut se manipuler comme une fonction. On
résume ci-dessous des éléments essentiels (aucune preuve n’est réellement demandée) :

(a) On peut définir la translatée δ(t − τ) = limn→+∞ φn(t − τ). Alors
∫
R
δ(u − τ)f(u) dt = f(τ)

sous les mêmes hypothèses que ci-dessus (vérifier qu’on obtient également cette relation par
changement de variable). On admettra cette propriété pour toute fonction continue.

(b) La distribution de Dirac est symétrique δ(t) = δ(−t) (vérifier).

(c) Finalement, pour toute fonction continue, on la propriété essentielle (noter la convolution) :
∫

R

f(u)δ(t− u) du = f(t) =

∫

R

δ(u)f(t− u) du

Réponses exercice: 1
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1. (a) limn→+∞ φn(t) = 0 si t 6= 0 et limn→+∞ φn(0) = ∞.

(b)
∫

R

φn(t)f(t) dt =

∫

R

ne−πn2t2f(t) dt =

∫

R

e−πu2
f(u/n) du

Sous cette dernière forme, les u 7→ e−πu2
f(u/n) convergent simplement vers la fonction u 7→ e−πu2

f(0) et

sont dominés par la fonction intégrable u 7→ e−πu2
(sup |f |). L’application du théorème de convergence dominée

donne alors

lim
n→∞

∫

R

φn(t)f(t) dt =

∫

R

e−πu2
f(0) du = f(0)

2. La continuité de f en zéro entraîne qu’elle est bornée dans un voisinage de zéro et donc, pour un N ∈ N choisi assez
grand, f bornée sur [−1/2N, 1/2N ]. Dès lors, on peut procéder comme précédemment :

∫

R

φn(t)f(t) dt =

∫

R

n1[−1/2n,1/2n](t)f(t) dt =

∫ 1/2

−1/2
f(u/n) du

La suite de fonctions u 7→ f(u/n) définies sur [−1/2, 1/2] converge simplement vers la fonction constante f(0), ces
fonctions sont dominées (à partir de n ≥ N) par une fonction constante (donc intégrable). On peut alors appliquer
le théorème de convergence dominée.

Une autre possibilité est de constater que les fonctions u 7→ f(u/n) définies sur [−1/2, 1/2] convergent uniformément
vers la fonction constante f(0), ce qui donne le même résultat par permutation de limite et intégrale.

3. Même technique.

4. Ici, φ n’est pas intégrable et la technique précédente ne fonctionne pas. En revanche, en supposant le support de f
inclus dans [−M,M ] :

∫

R

φn(t)f(t) dt =

∫ M

−M
φn(t)f(t) dt =

∫ M

−M

sinπnt

πt
f(0) dt +

∫ M

−M

sinπnt

π
g(t) dt

Pour n → +∞, le deuxième terme tend vers zéro tandis que le premier tend vers f(0), ce qui donne le résultat
souhaité.

5. Rien à démontrer, voir cours de mathématiques pour des preuves sérieuses.

Exercice 2: inégalité de Heisenberg Dans tout l’exercice, on considère un signal déterministe
x(t) d’énergie finie (t ∈ R représente le temps). On supposera que ce signal est dérivable, que x′(t)
est d’énergie finie et que tx(t) est d’énergie finie.

1. (a) Préciser comment s’énonceraient les hypothèses ci-dessus dans le langage du cours de ma-
thématiques. En admettant qu’elles existent, préciser les limites de t|x(t)|2 pour t → +∞ et
t → −∞.

(b) On note Ex l’énergie du signal x(t). Rappeler la définition de Ex.

2. On définit :

t0 ,

∫

R

t
|x(t)|2
Ex

dt et : T ,

√∫

R

(t− t0)2
|x(t)|2
Ex

dt

En faisant une analogie avec les probabilités, justifier que l’on puisse dire que t0 est le «temps moyen
du signal». Interpréter T (appelé parfois «durée quadratique moyenne»).

Dans la suite de l’énoncé, on supposera t0 = 0.

3. On note X(f) la transformée de Fourier de x(t) (f désigne la fréquence) et on fait l’hypothèse que∫
R
f |X(f)|2 df = 0.

En utilisant la relation de Parseval, donner l’expression de Ex en fonction de X(f). Interpréter la
quantité B introduite ci-dessous (et appelée parfois de «bande quadratique moyenne occupée») :

B ,

√∫

R

f2
|X(f)|2

Ex
df
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4. Rappeler comment s’écrit la transformée de Fourier de x′(t) en fonction de X(f) et en déduire :
∫

R

|x′(t)|2 dt = 4π2B2Ex

5. En appliquant l’inégalité de Schwarz à
∫
R
(tx(t))∗x′(t) dt d’une part, et en calculant cette intégrale

d’autre part, montrer que BT ≥ 1
4π .

6. Déterminer les signaux à valeurs réelles d’énergie finie pour lesquels le produit BT est minimum.

7. On rappelle la transformée de Fourier e−πt2 TF−→ e−πf2

et on considère le signal particulier x(t) =

e−πt2 . Calculer Ex, B et T .

Réponses exercice: 2

1. (a) x(t) dérivable et x(t), x′(t), tx(t) appartiennent à L2
C
(R). En admettant que les limites existent, on constate

alors que limt→+∞ t|x(t)|2 = limt→−∞ t|x(t)|2 = 0.

Remarque : L’existence des limites en question peut se prouver comme suit : soit g(t) = t|x(t)|2. Alors g′(t) =
|x(t)|2 + tx′(t)x(t)∗ + tx(t)x′(t)∗ est dans L1(R) puisque chacun des termes s’écrit comme un produit de deux
fonctions de L2(R). De plus |g(v) − g(u)| = |

∫ v
u g′(t) dt| ≤

∫ v
u |g′(t)| dt. g′ étant dans L1(R), ce dernier terme

tend vers zéro lorsque u, v tendent vers +∞ et donc g admet une limite en +∞ par le critère de Cauchy.

(b) cf. cours.

2. Remarquer que
|x(t)|2
Ex

est une densité de probabilité.

3. cf. cours.

4. x′(t)
TF−→ i2πfX(f) et donc par la relation de Parseval

∫

R

|x′(t)|2 dt =

∫

R

|i2πfX(f)|2 df = 4π2B2Ex

5.
∣∣∣∣
∫

R

(tx(t))∗x′(t) dt

∣∣∣∣
2

≤
(∫

R

t2|x(t)|2 dt

)(∫

R

|x′(t)|2 dt

)
= 4π2B2T 2(Ex)

2 (1)

En intégrant par parties :
∫

R

(tx(t))∗x′(t) dt =
[
t|x(t)|2

]+∞

−∞
−

∫

R

(x(t) + tx′(t))∗x(t) dt

= −
∫

R

|x(t)|2 dt−
∫

R

(tx′(t))∗x(t) dt

= −Ex −
(∫

R

(tx(t))∗x′(t) dt
)∗

d’où d’après cette dernière égalité :
∣∣∣∣
∫

R

(tx(t))∗x′(t) dt

∣∣∣∣ ≥
∣∣∣∣ℜ

{∫

R

(tx(t))∗x′(t) dt
}∣∣∣∣ ≥ Ex/2 (2)

En réunissant les deux inégalités ci-dessus, il vient (Ex)2/4 ≤ 4π2B2T 2(Ex)2 soit encore BT ≥ 1
4π

.

6. BT est minimum lorsque l’on a égalité dans l’inégalité de Cauchy-Schwarz, ce qui indique qu’il existe α ∈ R tel que

x′(t) = −2αtx(t). La résolution de cette équation différentielle donne x(t) = Ce−αt2 avec C ∈ R et α > 0 puisque
x(t) est d’énergie finie.

7. En notant y(t) = e−2πt2 , dont la transformée de Fourier est Y (f) = 1√
2
e−πf2/2, on a :

Ex =

∫

R

e−2πt2 dt = Y (0) =
1√
2

T 2 =

∫

R

t2
e−2πt2

Ex
dt =

[ te−2πt2

−4πEx

]+∞

−∞
+

∫

R

e−2πt2

4πEx
dt =

1

4π

et donc

T =
1

2
√
π

Le calcul de B = 1
2
√

π
se fait de même. Noter que pour le calcul de B et T , on aurait pu remarquer que B = T et

que le produit BT atteint sa borne inférieure.
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Exercice 3: effet d’une troncature Soit le signal

x(t) =

{
A cos(2πf0t) si |t| ≤ T/2

0 sinon.

1. Tracer le signal x(t) (pour T > 1/f0). Est-ce un signal d’énergie finie ? de puissance finie ?

2. Calculer la transformée de Fourier de ce signal et tracer son spectre en amplitude.

3. Calculer l’énergie ou la puissance du signal pour la valeur particulière T = T0 = 1/f0.

Réponses exercice: 3

1. Energie finie, puissance nulle.

2. x(t) = A cos(2πf0t)1[−T/2,T/2](t), et la transformée de Fourier se calcule donc immédiatement X(f) = AT
2

[sinc(π(f+
f0)T ) + sinc(π(f − f0)T )].

3. Energie = A2T0
2

.

Exercice 4: calcul de transformées de Fourier Cet exercice a pour but de manipuler quelques
transformées de Fourier. Le cadre est implicitement celui des distributions tempérées et aucune
justification théorique n’est demandée. On note dans cet exercice T et L deux réels positifs tels que
L > T > 0.

Soit le signal

x(t) =

{
1 si |t| ≤ T

2

0 sinon.

et le signal y(t) =
∑

k∈Z
x(t− kL).

1. Tracer l’allure des signaux x(t) et y(t).

2. Que vaut la transformée de Fourier X(f) du signal x(t) ?

3. On définit XL(t) =
∑

k∈Z
δ(t−kL). Quel est le nom couramment donné à cette distribution ?

4. Exprimer y(t) en fonction de x(t) et XL(t). Préciser en français le nom de l’opération mise
en jeu dans la formule donnée.

5. Déduire de la question précédente la transformée de Fourier Y (f) de y(t).

6. Tracer l’allure des transformées de Fourier X(f) et Y (f).

7. Voyez vous une analogie avec un calcul que vous auriez pu déjà faire en physique ?

8. Calculer la série de Fourier associée au signal L-périodique y(t).

9. Montrer que les coefficients de Fourier précédents ont déjà été obtenus lors du calcul de Y (f)
à la question 5.

Réponses exercice: 4

1. Facile.

2. X(f) = T sinc(πfT )

3. XL(t) est appelé peigne de Dirac.

4. y(t) = XL(t) ⋆ x(t) où ⋆ désigne la convolution.

5. Il vient Y (f) = 1
L
X 1

L
(f)X(f) = 1

L
X 1

L
(f)T sinc(πfT ).

6. A faire. . .

7. X(f) correspond à la figure de diffraction d’une fente tandis que Y (f) correspond à la figure de diffraction
d’un réseau (avec infinité de fentes).

8. La série de Fourier associée à y(t) s’écrit y(t) =
∑

k∈Z
y(t)e+i2πkt/L avec :

ck =
1

L

∫ L/2

−L/2
y(t)e−i2πkt/L dt =

1

L

∫ T/2

−T/2
e−i2πkt/L dt =

1

πk
sin(πk

T

L
) =

T

L
sinc

πkT

L



January 30, 2026 6

9. D’après l’expression de la question 5, en remplaçant X 1
L

:

Y (f) =
T

L

∑

k∈Z

δ(f − k

L
)sinc(πfT ) =

∑

k∈Z

T

L
sinc

πkT

L
δ(f − k

L
) =

∑

k∈Z

ckδ(f − k

L
)

Exercice 5: signal modulé à bande étroite, transformée de Fourier Dans cet exercice,
le cadre est implicitement celui des distributions tempérées et aucune justification théorique n’est
demandée.

1. Soit le signal p(t) = cos(2πf0t). Quelle est la transformée de Fourier P (f) de p(t) ?

2. Soit m(t) un signal à valeurs réelles dont la bande de fréquence occupée est [−B,B] avec B ≪ f0.
On définit x(t) = m(t)p(t). Calculer la transformée de Fourier X(f) de x(t) en fonction de M(f),
transformée de Fourier de m(t).

3. Représenter schématiquement l’allure de X(f) en fonction de celle de M(f) (transformée de Fourier
de m(t)) et préciser la bande occupée par x(t).

4. Comment s’appelle l’opération qui consiste à transformer m(t) en x(t) ? Comment appelle-t-on un
signal comme x(t) dont le spectre occupe une bande B avec B ≪ f0 ?

5. Soit le filtre de réponse en fréquence

Ha(f) =

{
2 si f ≥ 0,

0 si f < 0.

On note zm(t) le signal obtenu lors du filtrage de m(t) par Ha(f). Comment s’appelle le signal
zm(t) ? Tracer sommairement son spectre.

6. Donner la réponse impulsionnelle ha(t) du filtre de réponse en fréquence Ha(f) (calcul non de-
mandé). En déduire que l’on peut écrire zm(t) = m(t) + im̂(t) où m(t) et m̂(t) sont les parties
réelles et imaginaires de zm(t). Comment s’appelle le signal m̂(t) ?

7. Soit y(t) = ℜ{zm(t)ei2πf0t}. Tracer l’allure du spectre de y(t) et déduire de ce qui précède une
expression de y(t) en fonction de m(t) et m̂(t).

Réponses exercice: 5

1. P (f) = 1
2
(δ(f − f0) + δ(f + f0)).

2. X(f) = M(f) ⋆ P (f) = 1
2
(M(f − f0) +M(f + f0)).

3. Facile, voir cours.

4. La transformation de m(t) en x(t) s’appelle modulation. Un signal tel que x(t) est dit à bande étroite.

5. Le signal zm(t) est le signal analytique associé au signal réel m(t).

6. ha(t) = δ(t) + i
1
πt

d’où zm(t) = ha(t) ⋆m(t) = m(t)+) + im̂(t), où m̂(t) = 1
πt

⋆m(t) est la transformée de Hilbert de
m(t).

7.

y(t) = ℜ{zm(t)ei2πf0t}
= ℜ{(m(t) + +im̂(t))(cos(2πf0t) + i sin(2πf0t))}
= m(t) cos(2πf0t) − m̂(t) sin(2πf0t)

Voir le cours pour l’allure du spectre.

Exercice 6: fonction d’autocorrélation / densité spectrale (énergie) Soit le signal suivant
(A et α sont des constantes positives strictement) :

x(t) =

{
Ae−αt si t ≥ 0,

0 sinon.
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1. Montrer que x(t) est un signal d’énergie finie et calculer l’énergie Ex.

2. Calculer la fonction d’autocorrélation (en énergie) γx(τ) et retrouver la valeur de Ex à partir de
γx(τ).

3. Calculer la densité spectrale d’énergie Γx(f) du signal et retrouver la valeur de Ex à partir de Γx(f).

4. Calculer l’énergie du signal contenue dans la bande de fréquences [− α
2π ,

α
2π ].

Réponses exercice: 6

1. Ex = A2

2α

2. γx(τ) =
A2

2α
e−α|τ |

3. Γx(f) =
A2

α2 + 4π2f2

4. L’énergie dans la bande [− α
2π

, α
2π

] est Ex/2.

Exercice 7: filtrage, égalisation Un signal x(t) est transmis à travers un canal et le signal reçu
est y(t) = Ax(t − t0) + αx(t− t1), où α ≪ A et t0 < t1.

1. Déterminer la fonction de transfert Hc(f) de ce canal.

2. On désire compenser l’effet du canal par un filtrage de y(t) (traitement d’égalisation). Quelle est la
réponse en fréquence He(f) du filtre (appelé filtre égaliseur) que l’on doit appliquer à y(t) afin de
retrouver Ax(t− t0) en sortie de l’égaliseur ?

3. En utilisant le fait que α ≪ A et en effectuant un développement limité à l’ordre deux (par rapport
à α/A) de He(f), montrer que ce filtre égaliseur peut être approximé par le système suivant (figure
1) qui comporte des lignes à retard et des amplificateurs à gain constant. Préciser les valeurs de
A0, A1, A2 et τ .

retard τ retard τ

× A0 × A1 × A2

+

y(t) y(t− τ) y(t− 2τ)

A0y(t) +A1y(t− τ) +A2y(t− 2τ)

Figure 1 – Approximation du filtre égaliseur à l’aide de cellules de gain et de retard

Réponses exercice: 7

1. Hc(f) = Ae−i2πft0 + αe−i2πft1 .

2. He(f) =
Ae−i2πft0

Hc(f)
.

3. He(f) ≈ 1− α
A
e−i2πf(t1−t0) + α2

A2 e
−i4πf(t1−t0) d’où A0 = 1, A1 = − α

A
, A2 = α2

A2 et τ = t1 − t0.

Exercice 8: filtrage Soit β > 0 une constante et le filtre défini par sa réponse impulsionnelle

h(t) = δ(t)− βe−βt
1R+(t) =

{
δ(t)− βe−βt si t ≥ 0,

0 si t < 0.
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1. Le filtre est-il causal ? Justifier.

2. Le filtre est-il stable ? Justifier.

3. Exprimer la réponse en fréquence H(f) de ce filtre. Est-ce un passe-haut, passe-bas, passe-bande
ou coupe-bande ?

4. On définit un filtre complémentaire par sa réponse en fréquence G(f) = 1−H(f). Donner la réponse
impulsionnelle g(t) correspondante.

5. Soit x(t) un signal de densité spectrale de puissance Γx(f) et qui attaque en entrée les filtres H(f)
et G(f). On note y(t) et z(t) les sorties correspondantes.

H(f)

G(f)

x(t)

y(t)

z(t)

Calculer la densité spectrale de y(t) + z(t) en fonction de Γx(f).

6. Calculer la densité spectrale de y(t)− z(t) en fonction de Γx(f).

Réponses exercice: 8

1. Le filtre est causal puisque pour t < 0, on a h(t) = 0.

2. Oui, le filtre est stable au sens entrée bornée-sortie bornée.

3.

H(f) = TF{h(t)} = 1− β

β + i2πf
=

i2πf

β + i2πf

On constate |H(f)| ≤ 1, |H(f)| −−−−→
f→∞

1 et |H(f)| −−−→
f→0

0. Il s’agit donc d’un filtre globalement passe-haut.

4. g(t) = TF−1{G(f)} = δ(t) − h(t) = βe−βt
1R+

(t).

5. y(t) + z(t) provient du filtrage de x(t) par le filtre de réponse en fréquence H(f) + G(f). La densité spectrale est
donc : Γy+z(f) = |H(f) +G(f)|2Γx(f) = Γx(f).

6. y(t) − z(t) provient du filtrage de x(t) par le filtre de réponse en fréquence H(f) − G(f). La densité spectrale est
donc :

Γy−z(f) = |H(f) −G(f)|2Γx(f) = |2H(f) − 1|2Γx(f)

=

∣∣∣∣2
i2πf

β + i2πf
− 1

∣∣∣∣
2

Γx(f) =

∣∣∣∣
−β + i2πf

β + i2πf

∣∣∣∣
2

Γx(f)

= Γx(f)

Remarque : Ces deux fonctions de transfert sont souvent utilisées pour des filtres d’aiguillage dans les enceintes
acoustiques. H(f) alimente le «tweeter» tandis que G(f) alimente le «boomer». Les égalités Γy+z(f) = Γy−z(f) =
Γx(f) indiquent que le spectre en sortie de l’enceinte est théoriquement fidèle au spectre en sortie de l’amplificateur
de puissance et ce, même si l’on se trompe sur la polarité de branchement d’une des enceintes.
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Echantillonnage

Exercice 9: échantillonnage idéal/non idéal suiveur/non idéal bloqueur Dans cet exer-
cice, les signaux sont implicitement considérés comme appartenant à l’ensemble des distributions
tempérées. On note δ(t − a) la distribution de Dirac centrée en a et XT (t) =

∑
n∈Z

δ(t − nT ) le
peigne de Dirac de période T .

Soit un signal à temps continu x(t) de transformée de Fourier notée X(f).

1. On définit le signal xe(t) = x(t)XT (t).

(a) Montrer que xe(t) ne dépend que de l’ensemble des valeurs (x(nT ))n∈Z du signal x(t). Quelle
nom est donné à l’opération modélisée par la multiplication par le peigne de Dirac ?

(b) Calculer Xe(f) la transformée de Fourier de xe(t) (en fonction de X(f)) ?

(c) Dans le cas où x(t) est à bande limitée [−B,B], tracer l’allure schématique des spectres de
x(t) et xe(t).

2. On considère maintenant un échantillonnage non idéal du signal x(t). On introduit pour cela la
fonction porte Πθ(t) = 1 si 0 ≤ t ≤ θ et 0 sinon. On suppose de plus θ < T .

(a) Soit le signal xs(t) = x(t)

(
∑

n∈Z

Πθ(t− nT )

)
. Justifier par un dessin que ce signal puisse

modéliser un échantillonneur-suiveur (non idéal).

(b) Exprimer
∑

n∈Z
Πθ(t − nT ) comme un produit de convolution avec le peigne de Dirac, puis

calculer sa transformée de Fourier.

(c) En déduire la transformée de Fourier Xs(f) de xs(t). Commenter et conclure.

3. On considère un autre modèle d’échantillonnage non idéal en conservant les notations de la ques-
tion 2.

(a) Soit le signal xb(t) =
∑

n∈Z

x(nT )Πθ(t−nT ). Justifier par un dessin que ce signal puisse modéliser

un échantillonneur-bloqueur (non idéal).

(b) Ecrire xb(t) comme une convolution avec Πθ(t).

(c) En déduire la transformée de Fourier Xb(f) de xb(t). Comparer aux résultats précédents et
commenter.

Réponses exercice: 9

1. On définit le signal xe(t) = x(t)XT (t).

(a) Voir cours.

(b) Voir cours.

(c) Voir cours.

2. (a) Dessin à faire.

(b)

∑

n∈Z

Πθ(t − nT ) = Πθ(t) ⋆XT (t)
TF−→ θe−iπfθsinc(πfθ).

1

T
X 1

T
(f) =

θ

T

∑

n∈Z

e−iπ n
T

θsinc(π
n

T
θ)δ(f − n

T
)

(c)

Xs(f) = X(f) ⋆
θ

T

∑

n∈Z

e−iπ n
T

θsinc(π
n

T
θ)δ(f − n

T
) =

θ

T

∑

n∈Z

e−iπ n
T

θsinc(π
n

T
θ)X(f − n

T
)

Par rapport à la formule du spectre obtenu dans le cas d’un échantillonnage idéal, chaque motif de spectre périodisé
dans l’échantillonnage idéal est ici affecté d’un facteur identique pour n fixé. Un filtrage passe-bas permet donc de
reconstituer le signal initial.

3. (a) Dessin à faire.

(b) xb(t) = Πθ(t) ⋆
∑

n∈Z
x(nT )δ(t − nT ) = Πθ(t) ⋆ xe(t)
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(c) Xb(f) = θe−iπfθsinc(πfθ)Xe(f) = θ
T
e−iπfθsinc(πfθ)

∑
n∈Z

X(f − n
T
). La version périodisée du spectre ob-

tenue suite à un échantillonnage parfait est ici affectée d’un facteur en sinus cardinal, non constant pour un
motif (n fixé). Une reconstruction par filtrage passe-bas sera nécessairement sujette à distorsion, d’autant plus
faible que θ est petit.

Exercice 10: formule d’interpolation Dans cet exercice, on suppose T > 0 fixé.

1. Soit, pour tout n ∈ Z, sn le signal d’énergie finie (sn ∈ L2(R)) défini par sa transformée de Fourier
Sn qui s’écrit :

Sn(f) =

{√
Te−i2πnTf si f ∈ [−1/2T, 1/2T ]

0 sinon.

Calculer l’expression temporelle du signal sn.

2. On définit dans l’espace des signaux d’énergie finie (L2(R)) le produit scalaire :

〈x, y〉 ,
∫

R

x(t)y(t)∗ dt

Montrer que la famille (sn)n∈Z est une famille orthonormée dans l’espace des signaux d’énergie finie
et à bande limitée [−1/2T, 1/2T ].

3. Soit x un signal d’énergie finie et de bande limitée [−1/2T, 1/2T ]. On note X la transformée de
Fourier de x. On définit une version périodisée de X par :

{
∀f ∈]− 1/2T, 1/2T ] X̃(f) = X(f)

∀f ∈ R X̃(f + 1
T ) = X̃(f)

(a) Calculer le développement en série de Fourier de X̃. On rappelle que dans le cas présent, il
s’exprime sous la forme :

X̃(f) =
∑

n∈Z

cne
i2πnfT avec pour tout n ∈ Z : cn = T

∫ 1
2T

− 1
2T

X̃(f)e−i2πnfT df

(b) En déduire la relation suivante, appelée formule d’interpolation de Shannon :

x(t) =
∑

n∈Z

x(nT )sinc

(
π(t− nT )

T

)

A partir des questions 2 et 3b on obtient que la famille (sn)n∈Z est une base orthonormée des
signaux d’énergie finie et de bande limitée [−1/2T, 1/2T ].

4. Commenter le fait que l’on ait obtenu une formule d’interpolation exacte. Est-ce cohérent avec le
«sens physique» ?

Réponses exercice: 10

1.

sn(t) =
1√
T
sinc

(
π(t − nT )

T

)

2. Utiliser la relation de Parseval.

3. (a) Pour tout n ∈ Z, cn = Tx(−nT ) et donc :

X̃(f) =
∑

n∈Z

Tx(nT )e−i2πnfT

(égalité valable au sens de la norme quadratique dans L2(−1/2T, 1/2T )).
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(b) En notant Π 1
T

la fonction qui vaut 1 sur [−1/2T, 1/2T ] et 0 ailleurs, on remarque que X(f) = X̃(f)Π 1
T
(f) et

on a donc l’égalité suivante, valable au sens de la norme quadratique dans L2(R) :

X(f) =
∑

n∈Z

Tx(nT )e−i2πnfTΠ 1
T
(f) =

∑

n∈Z

√
Tx(nT )Sn(f)

La formule d’interpolation en découle immédiatement en prenant la transformée de Fourier inverse (noter que
cette égalité a ici été démontrée au sens de la norme quadratique de L2(R) et a utilisé la continuité de la TF
dans L2(R)).

Exercice 11: équivalence filtrage analogique/numérique On considère ha(t) et xa(t), deux
signaux analogiques déterministes continus, à bande limitée [−B,B] et tels que

∫
|ha(t)| dt < ∞ et∫

|xa(t)| dt < ∞.
Le but de l’exercice est de démontrer une équivalence entre filtrage analogique et numérique.

Ceci est représenté par les deux schémas de la figure 2, sur lequel on souhaite obtenir le lien entre
ya(

n
2B ) et yn.

xa(t) ha(t)
ya(t)

1
2B

ya(
n
2B )

xa(t)

1
2B

xn , xa(
n
2B )

hn , ha(
n
2B )

yn , hn ⋆ xn

Figure 2 – Filtrage analogique avant échantillonnage / Filtrage numérique après échantillonnage

1. Le filtre de réponse impulsionnelle ha(t) est-il stable ?

2. Soit ya(t) le résultat du filtrage de xa(t) par le filtre de réponse impulsionnelle ha(t).

(a) Comment s’écrit ya(t) sous forme d’une intégrale ?

(b) On note Xa(f), Ya(f) et Ha(f) les transformées de Fourier temps continu respectives des
signaux xa(t), ya(t) et ha(t) (la lettre f représente la fréquence). Quel est le lien entre Xa(f),
Ya(f) et Ha(f) ?

(c) En déduire :

ya(t) =

∫ B

−B

ei2πftHa(f)Xa(f) df

3. On forme par échantillonnage les signaux xn , xa(
n
2B ) et hn , ha(

n
2B ). On suppose aussi pour des

raisons techniques
∑ |xn| < ∞ et

∑ |hn| < ∞. La condition d’échantillonnage de Shannon-Nyquist
est-elle vérifiée ?

4. yn est le résultat du filtrage numérique de xn par le filtre de réponse impulsionnelle hn.

(a) Comment s’écrit yn sous forme d’une somme ?

(b) On note X(f̃), Y (f̃) et H(f̃) les transformées de Fourier temps discret respectives des signaux
xn, yn et hn (f̃ représente la fréquence normalisée). Quel est le lien entre X(f̃), Y (f̃) et H(f̃) ?

(c) En déduire que :

yn =

∫ 1
2

− 1
2

ei2πnf̃H(f̃)X(f̃) df̃

5. On admet pour les signaux xa(t) et ha(t) que la formule sommatoire de Poisson est vérifiée :

∑

k∈Z

Xa(f−2Bk) =
1

2B

∑

k∈Z

xa

(
k

2B

)
e−i2πk f

2B et :
∑

k∈Z

Ha(f−2Bk) =
1

2B

∑

k∈Z

ha

(
k

2B

)
e−i2πk f

2B



January 30, 2026 12

(a) Rappeler la définition de X(f̃) et en déduire que l’on a pour f̃ ∈]− 1
2 ,

1
2 [ : X(f̃) = 2BXa(2Bf̃).

Quelle relation a-t-on entre H(f̃) et Ha(f) ?

(b) En déduire yn = 2Bya(
n
2B ) et la relation :

ya

( n

2B

)
=

1

2B

∑

k∈Z

ha

(
k

2B

)
xa

(
n− k

2B

)

Réponses exercice: 11

1. Oui.

2. (a) ya(t) =
∫
R
ha(θ)xa(t− θ) dθ.

(b) Ya(f) = Ha(f)Xa(f).

(c)

ya(t) =

∫

R

ei2πftYa(f) df =

∫

R

ei2πftHa(f)Xa(f) df =

∫ B

−B
ei2πftHa(f)Xa(f) df

L’égalité est vraie pour tout t ∈ R compte tenu des hypothèses (continuité et stabilité des signaux).

3. Oui, la condition d’échantillonnage de Shannon-Nyquist est vérifiée.

4. (a) yn =
∑

k∈Z
hkxn−k

(b) Y (f̃) = H(f̃)X(f̃ )

(c) Formule de transformée de Fourier inverse

5. (a)

X(f̃) ,
∑

k∈Z

xke
−i2πkf̃ =

∑

k∈Z

xa

(
k

2B

)
e−i2πkf̃ = 2B

∑

k∈Z

Xa(2Bf̃ − 2Bk)

Pour f̃ ∈] − 1
2
, 1
2
[, la dernière expression vaut 2BXa(2Bf̃) compte tenu du support de Xa(f). Idem H(f̃) =

2BHa(2Bf̃ ).

(b)

yn = (2B)2
∫ 1

2

− 1
2

ei2πnf̃Ha(2Bf̃ )Xa(2Bf̃) df̃ = 2B

∫ B

−B
ei2π

n
2B

fHa(f)Xa(f) df = 2Bya
( n

2B

)

Exercice 12: échantillonnage de l’enveloppe complexe

1. On considère un signal analogique x(t) à bande limitée qui occupe une bande [−B,B].

(a) Quelle est la fréquence minimale à laquelle il est possible d’échantillonner x(t) sans perte
d’information ?

(b) On construit le signal y(t) = x(t) cos(2πf0t) où f0 est une fréquence fixée et grande par rapport
à B.

Calculer la transformée de Fourier Y (f) de y(t) en fonction de X(f), tranformée de Fourier
de x(t) (on suppose qu’il n’y a pas de problème d’existence). Représenter schématiquement
Y (f) et X(f).

(c) Quelle est la bande [−C,C] occupée par y(t) ? Si on applique directement le théorème d’échan-
tillonnage de Shannon-Nyquist, quelle est la fréquence minimale d’échantillonnage de y(t) ?

Ce résultat vous inspire-t-il un commentaire en comparaison du résultat de la question 1a ?

Nous allons maintenant montrer comment il est possible d’échantillonnner un signal bande étroite
à une fréquence inférieure à la fréquence de Shannon-Nyquist.

2. On considère un signal s(t) à valeurs réelles et à bande étroite. On note f0 la fréquence centrale
de s(t) ; [f0 − B, f0 + B] désigne la bande des fréquences positives occupés par s(t) (f0 grand par
rapport à B).

(a) Tracer schématiquement le spectre de s(t) en faisant apparaître les fréquences positives et
négatives.

(b) Rappeler la définition de zs(t), signal analytique associé à s(t). Tracer schématiquement son
spectre.
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(c) Rappeler la définition de ξs(t), enveloppe complexe associée à s(t). Tracer schématiquement
son spectre.

3. (a) Quelle est la bande occupée par ξs(t) ? En déduire la fréquence minimale à laquelle on peut
échantillonner ξs(t) sans perdre d’information.

(b) Expliquer brièvement comment à partir d’échantillons de ξs(t) prélevés à la fréquence 2B, on
peut reconstituer s(t). Conclure.

Réponses exercice: 12

1. (a) Fréquence minimale d’échantillonnage de x(t) : f
(x)
e = 2B.

(b) Y (f) = 1
2
(X(f − f0) +X(f + f0)).

(c) C = f0 + B. Fréquence minimale d’échantillonnage de y(t) : f
(y)
e = 2C = 2(f0 + B). Il est surprenant que

f
(y)
e >> f

(x)
e alors que les deux signaux x(t) et y(t) contiennent la même information.

2. (a)

(b) Voir cours.

(c) Voir cours.

3. (a) Bande occupée par ξs(t) : [−B,B]. Fréquence minimale d’échantillonnage de ξs(t) : f
(ξ)
e = 2B.

(b) A partir d’échantillons ξs(k/2B), k ∈ Z on peut théoriquement reconstruire ξs(t), t ∈ R (d’après th. d’échan-
tillonnage) et alors s(t) = ℜ[ξs(t)ei2πf0t]. Il est donc possible de reconstruire un signal réel et bande étroite
(largeur de bande 2B) à partir des échantillons de son enveloppe complexe prélevés à une fréquence 2B très
inférieure à la fréquence de Shannon-Nyquist.

Exercice 13: décimation, interpolation Soit s(t) un signal à bande limitée [−B,B] dont l’allure
du spectre est représentée schématiquement sur la figure 3.

fr (fréquence, non normalisée)

|S(fr)|

2B

Figure 3 – Spectre schématique du signal s(t)

1. On définit les signaux à temps discret :

∀n : xn = s
( n

2B

)
zn = s

( n

4B

)

Comment s’appelle l’opération qui consiste à recueillir les signaux ci-dessus à partir de s(t) ? La
condition du théorème de Shannon-Nyquist est-t-elle vérifiée pour xn ? pour zn ?

2. Tracer l’allure schématique des spectres des signaux à temps discret xn et zn (on tracera l’allure
des transformées de Fourier à temps discret respectives X(f) et Z(f) sur l’intervalle de fréquences
normalisées [0, 1]).

3. On définit le signal à temps discret yn par :
{

Si n est pair (n = 2p), y2p = xp

Si n est impair (n = 2p+ 1), y2p+1 = 0

Calculer la transformée en z de yn (notée Y [z]) en fonction de celle de xn (notée X [z]).

4. Quel est le lien entre Y [z] et la transformée de Fourier à temps discret de yn (notée Y (f)) ? En
déduire un lien entre Y (f) et X(f). Représenter alors l’allure de Y (f) sur l’intervalle de fréquences
normalisées [0, 1].
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5. Montrer que par un filtrage passe-bas numérique de yn, il est possible de retrouver zn.

6. On souhaite obtenir la formule correspondant à l’interpolation précédemment décrite en fréquence.

(a) Considérer Z(f) sur l’intervalle [−1/4, 1/4], décomposer cette fonction en série de Fourier sur
cet intervalle et montrer que cette décomposition s’écrit :

Z(f) =
∑

p∈Z

2z2pe
−i4πpf (sur l’intervalle [−1/4, 1/4])

Rappel : Pour une fonction g périodique de période a, on rappelle qu’une écriture de la décomposition en série

de Fourier est donnée par g(x) =
∑

k∈Z

cke
−i2πkx/a avec ck =

1

a

∫ a/2

−a/2
g(x)e+i2πkx/a dx.

(b) Exprimer zn en fonction de Z(f) puis en déduire la relation suivante qui exprime zn en fonction
des échantillons pairs :

zn =
∑

p∈Z

z2psinc

(
π(n− 2p)

2

)

(c) En déduire zn en fonction des xn.

Réponses exercice: 13

1. Il s’agit d’un échantillonnage. Les conditions du théorème de Shannon-Nyquist sont vérifiées pour xn et pour zn.
Pour xn, la fréquence d’échantillonnage est la valeur minimale limite fournie par le théorème d’échantillonnage.

2.

0 1

f

|X(f)|

0 1

f

|Z(f)|

3. Y [z] = X[z2].

4. Y (f) = X(2f).

0 1

f

|Y (f)|

5. On constate (graphiquement) que le filtrage passe-bas numérique du motif qui représente Y (f) donne le motif qui
représente Z(f).

6. (a) Sur l’intervalle [− 1
4
, 1
4
], Z(f) peut se décomposer :

Z(f) =
∑

p∈Z

cpe
−i4πpf (3)

où, compte tenu du support de Z(f) :

cp = 2

∫ 1/4

−1/4
Z(f)e+i4πpf df = 2

∫ 1/2

−1/2
Z(f)e+i4πpf df = 2z2p (4)

D’où le résultat.

(b) En tenant à nouveau compte du support de Z(f) :

zn =

∫ 1/2

−1/2
Z(f)e+i2πnf df =

∫ 1/4

−1/4
Z(f)e+i2πnf df (5)

En remplaçant Z(f) par l’expression trouvée sur cet intervalle :

zn =

∫ 1/4

−1/4


∑

p∈Z

2z2pe
−i4πpf


 e+i2πnf df =

∑

p∈Z

2z2p

∫ 1/4

−1/4
e−i4πpf e+i2πnf df (6)

En poursuivant le calcul, il vient le résultat demandé :

zn =
∑

p∈Z

z2psinc

(
π(n− 2p)

2

)
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(c) On a z2p = xp pour tout entier p et donc d’après la question précédente :

zn =
∑

p∈Z

xpsinc

(
π(n− 2p)

2

)

Remarque : L’élève soucieux de rigueur pourra supposer que zn est sommable et donc dans ℓ2. Dès lors, (3) est vraie

dans L2(− 1
4
, 1
4
) (et non pas pour tout f). (5) exprime alors que compte tenu du support de Z(f) dans L2(− 1

2
, 1
2
),

on a l’égalité des deux produits scalaires :

〈e−i2πnf , Z(f)〉L2(− 1
2
, 1
2
) = 〈e−i2πnf , Z(f)〉L2(− 1

4
, 1
4
)

Ceci justifie la permutation de la somme et de l’intégrale dans (6).
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Signaux déterministes à temps discret

Exercice 14: transformée en z

1. Transformée en z (et domaine de définition) de :

xn =

{
βn

n! si n ≥ 0,

0 sinon.

oú β ∈ C.

2. Transformée en z (et domaine de définition) de :

yn =

{
nαn si n ≥ 0,

0 sinon.

où α ∈ C∗.

3. Les signaux xn et yn sont délivrés chacun à une période T par deux sources avec un retard T/2 entre
les deux. On construit le signal multiplexé sn en prenant : s0 = x0, s1 = y0, s2 = x1, s3 = y1, . . ..
Transformée en z de sn ?

Réponses exercice: 14

1. X[z] = eβ/z sur le domaine de définition C∗.

2. Y [z] = α
z

1
(1−α/z)2

sur le domaine de définition |z| > |α|.
On peut en effet utiliser la règle de d’Alembert du calcul du rayon de convergence (en définissant un = n(α

z
)n, on a

limn→+∞
un+1

un
= α

z
et donc

∑
n≥0 un =

∑
n≥0 n(

α
z
)n converge pour |α/z| ≤ 1). On se rappelle d’autre part que :

∀|x| < 1,
∑

n≥0

xn =
1

1− x
et en dérivant :

∑

n≥1

nxn−1 =
1

(1 − x)2

On trouve Y [z] =
∑

n≥0 n(α/z)
n = α

z

∑
n≥1 n(

α
z
)n−1 = α

z
1

(1−α/z)2
.

3. S[z] = X[z2] + z−1Y [z2] sur le domaine où z2 appartient au domaine de X[z] et Y [z].

Exercice 15: inversion de la transformée en z Calculer les signaux à temps discret dont la
transformée en z a pour expression :

X [z] =
z

(z − 1)(z − 2)2

Réponses exercice: 15 X[z] admet trois domaines de convergence possible qui sont D1 = {z ∈ C | 0 < |z| < 1},
D2 = {z ∈ C | 1 < |z| < 2} et D3 = {z ∈ C | 2 < |z|}.

On notera la décomposition en éléments simples X[z] = 1
z−1

+ −1
z−2

+ 2
(z−2)2

et les développements en série :

∀|z| < |a|, 1

z − a
=

−a−1

1− a−1z
= −a−1

∞∑

k=0

a−kzk = −a−1
0∑

n=−∞
anz−n =

0∑

n=−∞
−an−1z−n

∀|z| > |a|, 1

z − a
=

z−1

1− az−1
= z−1

∞∑

k=0

akz−k =
∞∑

n=1

an−1z−n
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Et par dérivation, puisque 1
(z−a)2

= d
dz

[
−1
z−a

]
, il vient :

∀|z| < |a|, 1

(z − a)2
=

d

dz




0∑

n=−∞
an−1z−n


 =

0∑

n=−∞
−nan−1z−(n+1) =

1∑

p=−∞
−(p− 1)ap−2z−p

=
0∑

n=−∞
−(n− 1)an−2z−n

∀|z| > |a|, 1

(z − a)2
=

d

dz

[
−

∞∑

n=1

an−1z−n

]
= −

∞∑

n=1

−nan−1z−(n+1) = −
∞∑

p=2

−(p− 1)ap−2z−p

= −
∞∑

n=1

−(n− 1)an−2z−n

D’où l’on tire :

1

z − 1
=

{∑0
n=−∞ −z−n si |z| < 1,

=
∑∞

n=1 z
−n si |z| > 1.

−1

z − 2
=

{∑0
n=−∞ 2n−1z−n si |z| < 2,∑∞
n=1 −2n−1z−n si |z| > 2.

2

(z − 2)2
=

{∑0
n=−∞ −(n− 1)2n−1z−n si |z| < 2,

−∑∞
n=1 −(n− 1)2n−1z−n si |z| > 2.

On en déduit :

∀z, |z| < 1 X[z] =
0∑

n=−∞
−z−n +

0∑

n=−∞
2n−1z−n +

0∑

n=−∞
−(n− 1)2n−1z−n

=
0∑

n=−∞

(
−1 + (2 − n)2n−1

)
z−n

∀z, 1 < |z| < 2 X[z] =
∞∑

n=1

z−n +
0∑

n=−∞
2n−1z−n +

0∑

n=−∞
−(n− 1)2n−1z−n

=
0∑

n=−∞
(2− n)2n−1z−n +

∞∑

n=1

z−n

∀z, 2 < |z| X[z] =
∞∑

n=1

z−n +
∞∑

n=1

−2n−1z−n −
∞∑

n=1

−(n− 1)2n−1z−n

=
∞∑

n=1

(1 + (n− 2)2n−1)z−n

On lit alors immédiatement :

— Si le domaine de convergence est D1 = {z ∈ C | 0 < |z| < 1},

xn =

{
(−1 + (2− n)2n−1 n ≤ 0,

0 n > 0.

— Si le domaine de convergence est D2 = {z ∈ C | 1 < |z| < 2},

xn =

{
(2− n)2n−1 n ≤ 0,

1 n > 0.

— Si le domaine de convergence est D3 = {z ∈ C | 2 < |z|},

xn =

{
0 n ≤ 0,

1 + (n− 2)2n−1 n > 0.

Ces résultats peuvent se retrouver à l’aide de la formule d’inversion de la transformée en z en calculant des

intégrales par le théorème des résidus. *** à faire un jour ***

Exercice 16: transformée en z, filtre à temps discret Soit un filtre de réponse impulsionnelle :

hn =

{
0 si n < 0,(
3
2

)n
si n ≥ 0.
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1. En justifiant uniquement à partir de cette réponse impulsionnelle :

(a) Que peut-on dire de la causalité du filtre ?

(b) Que peut-on dire de la stabilité du filtre ?

2. (a) Calculer H [z], fonction de transfert en z du filtre de réponse impulsionnelle hn. Préciser le
domaine de convergence considéré pour la transformée en z.

(b) Préciser comment se retrouvent la stabilité (ou non) et la causalité (ou non) à partir du
domaine de convergence.

(c) Trouver la relation de récurrence entrée-sortie du filtre H [z].

3. (a) Sur quel autre domaine l’expression trouvée pour H [z] converge-t-elle ? Ce domaine correspond-
il à un filtre stable ? causal ?

(b) On note un le signal à temps discret dont la transformée en z (notée U [z]) a la même expression
que H [z], mais le domaine de convergence est le deuxième domaine évoqué à la question
précédente. Calculer les un.

Réponses exercice: 16

1. (a) Causal car hn = 0 pour n < 0.

(b) Instable car hn diverge (réponse à une impulsion de Dirac, bornée).

2. (a) Sur le domaine |z| > 3
2

(càd | 3
2
z−1| < 1), H[z] =

∑
n≥0

(
3
2

)n
z−n = 1

1− 3
2
z−1 .

(b) Causal car convergence sur le complémentaire d’un disque, instable car le cercle unité n’appartient pas au
domaine de convergence.

(c) En notant yn la sortie et xn l’entrée, yn = xn + 3
2
yn−1.

3. (a) Sur le domaine |z| < 3
2

(càd | 2
3
z| < 1), domaine correspondant à un filtre stable non causal.

(b) Sur le domaine |z| < 3
2
,

U [z] =
1

1− 3
2
z−1

=
−1

3
2
z−1

1

1− 2
3
z
=

−1
3
2
z−1

∑

n≥0

(
2

3
z

)n

= −
∑

n≥0

(
2

3

)n+1

zn+1 = −
∑

n≤1

(
2

3

)−n

z−n

d’où

un =

{
−

(
3
2

)n
si n ≤ 1

0 si n ≥ 0.

Exercice 17: transformée en z, filtre à temps discret

1. Soit le signal à temps discret (xn)n∈Z défini par :

xn =

{
2−n si n ≥ 0,

0 si n < 0.

Calculer la transformée en z du signal (xn)n∈Z. Quel est le domaine de convergence correspondant ?

2. Le signal (xn)n∈Z est appliqué à l’entrée du filtre stable et causal défini par la fonction de transfert
en z :

H [z] =
1

1− 4z

On note (yn)n∈Z la sortie correspondante du filtre.

Justifier l’existence d’un filtre stable et causal défini par cette fonction de transfert. Donner la
relation de récurrence entrée-sortie qui correspond à H [z].

3. Donner la relation entre les transformées en z X [z] et Y [z] de (xn)n∈Z et (yn)n∈Z respectivement
et le domaine sur lequel cette relation est valable. En déduire la séquence (yn)n∈Z.

Réponses exercice: 17
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1. Sur le domaine de convergence |z| > 1/2,

X[z] =
2z

2z − 1

2. Unique pôle de H[z] en 1/4, de module < 1. D’où l’existence d’un filtre stable et causal de fonction de transfert H[z].
Relation de récurrence : pour tout n ∈ Z, yn = 1

4
(yn−1 − xn−1).

3. Sur le domaine |z| > 1/2, on a Y [z] = H[z]X[z] et on obtient après décomposition en éléments simples :

Y [z] =
1

4z − 1
− 1

2z − 1

Un développement en série sur le domaine considéré donne yn = 4−n − 2−n si n > 0 et yn = 0 si n ≤ 0.

Exercice 18: tranformée en z, filtre à temps discret

1. Soit le filtre à temps discret suivant, causal et défini par la relation de récurrence entre son entrée
(xn)n∈Z et sa sortie (yn)n∈Z :

∀n ∈ Z yn =
1

2
yn−1 + xn

(a) Quelle est la fonction de transfert en z H [z] de ce filtre et le domaine de convergence corres-
pondant ?

(b) Ce filtre est-il stable ? Justifier.

(c) Le filtre est-il de réponse impulsionnelle finie ou infinie ? Calculer cette réponse impulsionnelle.

2. Ce filtre est attaqué en entrée par le signal (xn)n∈Z défini par :

xn =

{
3−(n−1) si n ≥ 1,

0 si n ≤ 0.

(a) Calculer la transformée en z X [z] du signal (xn)n∈Z. Quelle est la transformée en z Y [z] du
signal de sortie (yn)n∈Z ?

(b) Calculer la sortie (yn)n∈Z.

Réponses exercice: 18

1. (a) Sur le domaine de convergence |z| > 1/2,

H[z] =
1

1− z−1/2
.

(b) Filtre stable car unique pôle en 1/2 et le domaine de convergence contient donc le cercle unité.

(c) Réponse impulsionnelle infinie : hn = 2−n si n ≥ 0 et hn = 0 si n < 0.

2. (a)

X[z] =
z−1

1− z−1/3
Y [z] =

z−1

(1 − z−1/2)(1 − z−1/3)
.

(b) En développant Y [z] sur le domaine |z| > 1/2, yn = 3/2n−1 − 2/3n−1 si n ≥ 1 et yn = 0 sinon.

Exercice 19: filtre à temps discret On s’intéresse à un filtrage à temps discret dont le schéma
ci-dessous donne les notations :

(an)n∈Z

(hn) / H [z]
(bn)n∈Z
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La réponse impulsionnelle est donnée par :

hn =





1 si n = 0,

1/2 si n = 1,

0 sinon.

1. Uniquement à partir de la réponse impulsionnelle, dire (en justifiant) si le filtre précédent est :

— stable ?

— causal ?

2. Exprimer à un instant n donné la sortie (bn)n∈Z du filtre ci-dessus en fonction de l’entrée (an)n∈Z.
Quel(s) nom(s) donne-t-on à un filtre ayant un relation entrée-sortie de ce type ?

3. Déterminer la fonction de transfert en z ainsi que la réponse en fréquence H(f) de ce même filtre.

4. Calculer |H(f)|2 et tracer son allure en fonction de f . En déduire si le type de filtre (passe-haut,
passe-bas, passe-bande, coupe-bande).

5. On s’intéresse maintenant au filtre inverse du filtre précédent :

(bn)n∈Z

(gn) / G[z]
(an)n∈Z

Pour le filtre G[z] ci-dessus, exprimer la relation de récurrence donnat la sortie an à un instant n
donné en fonction de l’entrée bn et d’autres valeurs de la sortie. Calculer la fonction de transfert
G[z].

6. Préciser le domaine de convergence de G[z] en indiquant la causalité (ou non). En déduire la stabilité
(ou non) du filtre G[z]. On veillera à bien justifier les réponses.

7. Calculer la réponse impulsionnelle (gn)n∈Z correspondant à G[z]. Quel(s) nom(s) donne-t-on à un
filtre satisfaisant une relation de récurrence comme G[z] et ayant une réponse impulsionnelle du
type de (gn)n∈Z ?

Réponses exercice: 19

1. Stable car réponse impulsionnelle sommable. Causal car hn = 0 pour n < 0.

2. bn = an + 1
2
an−1. On parle de filtre réponse impulsionnelle finie ou MA (moving average càd en français moyenne

mobile).

3. H[z] = 1 + 1
2
z−1 et H(f) = 1 + 1

2
e−i2πf

4. |H(f)|2 = 5
4
+ cos 2πf . Il s’agit d’un filtre passe-bas.

5. an = bn − 1
2
an−1 et G[z] = 1/(1 + 1

2
z−1) = 1/H[z].

6. G[z] est stable et causal, le domaine de convergence de G[z] est {z ∈ C | |z| > 1/2}. La causalité ressort directement de
l’équation de récurrence. La stabilité se constate au travers du domaine de convergence, qui a été choisi en cohérence
avec la causalité (complémentaire d’un disque de rayon plus petit que 1 puisque unique pôle situé à l’intérieur du
cercle unité). La stabilité se constate aussi par la sommabilité de (gn)n∈Z.

7. gn = 0 pour n < 0 et gn = (−1/2)n pour n ≥ 0. Il s’agit d’un filtre récursif et de réponse impulsionnelle infinie.

Exercice 20: filtre à temps discret On s’intéresse à un filtrage à temps discret dont le schéma
ci-dessous donne les notations :
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(an)n∈Z

(hn) / H [z]
(bn)n∈Z

La réponse impulsionnelle est donnée par :

hn =





1 si n = 0,

−1/2 si n = 1,

0 sinon.

1. Uniquement à partir de la réponse impulsionnelle, dire (en justifiant) si le filtre est :

— stable ?

— causal ?

2. Exprimer à un instant n donné la sortie (bn)n∈Z du filtre ci-dessus en fonction de l’entrée (an)n∈Z.

3. Déterminer la fonction de transfert en z H [z] ainsi que la réponse en fréquence H(f) de ce même
filtre.

4. Calculer |H(f)|2 et tracer son allure en fonction de f . En déduire le type de filtre (passe-haut,
passe-bas, passe-bande, coupe-bande).

5. On s’intéresse maintenant au filtre causal, inverse du filtre précédent :

(bn)n∈Z

(gn) / G[z]
(an)n∈Z

Exprimer à un instant n donné la sortie (an)n∈Z du filtre ci-dessus en fonction de cette sortie avant
l’instant n et de l’entrée (bn)n∈Z. Calculer la fonction de transfert G[z].

6. Préciser le domaine de convergence de G[z] et en déduire la stabilité (ou non) du filtre G[z].

7. Calculer la réponse impulsionnelle de (gn)n∈Z et retrouver la stabilité (ou non) du filtre à partir de
(gn)n∈Z.

8. Parmi les acronymes AR, MA, ARMA, RIF, RII, dire en précisant leur signification, ceux que l’on
donne aux filtres de fonction de transfert H [z] et G[z] respectivement.

Réponses exercice: 20

1. Stable car réponse impulsionnelle sommable. Causal car hn = 0 pour n < 0.

2. bn = an − 1
2
an−1.

3. H[z] = 1− 1
2
z−1 et H(f) = 1− 1

2
e−i2πf

4. |H(f)|2 = 5
4
− cos 2πf . Il s’agit d’un filtre passe-haut.

5. an = bn + 1
2
an−1 et G[z] = 1/(1 − 1

2
z−1) = 1/H[z].

6. Le domaine de convergence de G[z] est {z ∈ C | |z| > 1/2}, en conformité avec la causalité. Ce domaine de convergence
contient le cercle unité, ce qui indique la stabilité. En d’autres termes, le domaine de convergence est le complémentaire
d’un disque de rayon plus petit que 1 puisque l’unique pôle est situé à l’intérieur du cercle unité.

7. gn = 0 pour n < 0 et gn = (1/2)n pour n ≥ 0. La stabilité se constate par la sommabilité de (gn)n∈Z.

8. H[z] est un filtre RIF (réponse impulsionnelle finie), de type MA (moving average càd en français moyenne mobile).
Son inverse G[z] est un filtre RII (réponse impulsionnelle infinie), de type AR (auto-régressif, ou encore récursif).
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Exercice 21: synthèse d’un filtre numérique Cet exercice est un exemple simple de synthèse
de filtre numérique. On note (hk)k∈Z la réponse impulsionnelle de ce filtre et H(f) sa réponse en
fréquence.

1. Dans tout l’énoncé, les fréquences sont normalisées (ou réduites) et la lettre f désigne une telle
fréquence. Si Fe est la fréquence d’échantillonnage des signaux d’origine, quelle lien existe-t-il entre
f , Fe et la fréquence réelle ?

2. Le filtre que l’on souhaite synthétiser est un filtre numérique passe-bas idéal de fréquence de coupure
f0 (réponse en fréquence égale à 1 dans la bande passante et nulle en dehors). Les coefficients du
filtre sont à valeurs réelles. Quelles est la plage de valeurs ayant un sens pour la fréquence normalisée
f0 ? Préciser ce que vaut la fonction H(f) et la tracer en fonction de f sur l’intervalle [−1, 1].

3. Comment s’exprime H(f) en fonction des coefficients (hk)k∈Z de la réponse impulsionnelle ? Re-

marquer alors que l’on peut écrire hk =
∫ 1/2

−1/2 H(f)e+i2πkf df pour tout k et calculer les valeurs de

(hk)k∈Z.

4. Le filtre obtenu est-t-il de réponse impulsionnelle finie ou infinie ? Est-il causal ou non ?

5. On regarde maintenant successivement comment une troncature puis un décalage de la réponse
impulsionnelle (hk)k∈Z obtenue permet d’approcher le filtre souhaité.

(a) Proposer une solution pour obtenir à partir de (hk)k∈Z un filtre approché de réponse impul-
sionnelle finie avec 5 coefficients non nuls. On notera (h̃k)k∈Z la réponse impulsionnelle de ce
filtre approché.

(b) Proposer une solution pour obtenir à partir de (h̃k)k∈Z un filtre causal de réponse impulsion-
nelle finie avec 5 coefficients non nuls. On notera (gk)k∈Z ce dernier filtre obtenu.

6. Comment s’exprime G[z], fonction de transfert en z du filtre (gk)k∈Z ? Quels sont les pôles de G[z] ?
Que peut-on en déduire en terme de stabilité ?

7. Que peut-on dire de façon générale concernant la stabilité d’un filtre de réponse impulsionnelle
finie ?

Réponses exercice: 21

1. La fréquence réelle est égale au produit fFe.

2. f0 compris entre 0 et 1/2. H(f) est périodique, période 1 et telle que

H(f) =

{
1 si f ∈ [0, f0] ∪ [1− f0, 1]

0 si f ∈]f0, 1− f0[.

3. H(f) =
∑

k∈Z
hke

−i2πkf ; hk = 2f0sinc(2πkf0).

4. Réponse impulsionnelle infinie, non causal.

5. (a) Troncature : prendre h̃k =

{
hk si k = −2,−1, 0, 1 ou 2

0 sinon.

(b) Décalage de la réponse impulsionnelle : gk = h̃k−2.

6. G[z] = g0 + g1z−1 + g2z−2 + g3z−3 + g4z−4. Le seul pôle de G[z] est z = 0, à l’intérieur du cercle unité. G[z] est
donc stable.

7. Un filtre de réponse impulsionnelle finie est toujours stable.

Exercice 22: cryptage vocal simple
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1. Soit un signal réel à temps discret noté (xn)n∈Z. On définit un nouveau signal à temps discret
(yn)n∈Z en changeant le signe d’un échantillon sur deux, c’est-à-dire pour tout n, yn = (−1)nxn.

(a) Exprimer la transformée en z Y [z] de (yn)n∈Z en fonction de celle de (xn)n∈Z notée X [z].

(b) Rappeler le lien entre la transformée en z et la transformée de Fourier à temps discret. En
déduire le lien suivant entre les transformées de Fourier à temps discret respectives : Y (f) =
X(f + 1

2 ).

(c) Expliquer pourquoi l’opération qui à (xn)n∈Z associe (yn)n∈Z «inverse» les hautes et les basses
fréquences.

2. La technique précédente peut être utilisée pour le cryptage d’un signal de téléphonie. On suppose
que (xn)n∈Z est le signal numérique provenant de l’échantillonnage à 8kHz d’un signal vocal de
téléphonie, dont le spectre s’étend de 300Hz à 3400Hz.

(a) Représenter de manière schématique le spectre du signal numérique de téléphonie en fonction
de la fréquence réelle (on indiquera sur le schéma la fréquence d’échantillonnage).

(b) Représenter de manière schématique le spectre du signal (yn)n∈Z correspondant en fonction
de la fréquence réelle. (on indiquera sur le schéma la fréquence d’échantillonnage).

(c) Justifier que le signal analogique synthétisé à partir de (yn)n∈Z ne soit plus intelligible.

Réponses exercice: 22

1. (a) Y [z] =
∑

n ynz−n =
∑

n(−1)nxnz−n = X[−z]

(b) Y (f) = Y [ei2πf ] = X[−ei2πf ] = X[ei2π(f+ 1
2
)] = X(f + 1

2
).

(c) La fréquence 0 devient la fréquence 1/2 et réciproquement (voir aussi les dessins à faire dans les questions
suivantes).

2. (a) Dessin à faire.

(b) Dessin à faire.

(c) Lié à l’inversion des hautes et basses fréquences.

Exercice 23: filtre à minimum de phase On considère le filtre à temps discret défini par la
relation de récurrence suivante entre le signal d’entrée (xn)n∈Z et de sortie (yn)n∈Z :

yn = xn − 2xn−1 + 2xn−2

1. Donner la réponse impulsionnelle (hn)n∈Z du filtre en question. Le filtre est-il récursif ? de réponse
impulsionnelle finie ou infinie ? causal ? stable ou instable ?

2. Notons X [z] (resp. Y [z]) la transformée en z de (xn)n∈Z (resp. (yn)n∈Z). Donner le lien entre X [z],
Y [z] et la fonction de transfert en z du filtre, notée H [z]. Calculer l’expression de H [z] et préciser
le(s) zéro(s) et le(s) pôle(s) du filtre. Retrouve-t-on les propriétés de stabilité et causalité ?

3. Soit α ∈ C, |α| 6= 1 et soit le filtre défini par sa fonction de transfert en z : Φ[z] = 1−αz−1

α∗−z−1 . Rappeler
le lien entre la réponse fréquentielle Φ(f) de ce filtre et Φ[z]. En déduire qu’il s’agit d’un filtre
passe-tout (module de la réponse fréquentielle constant égal à un).

4. En écrivant le filtre H [z] sous la forme H [z] = (1−α1z
−1)(1−α2z

−1), montrer qu’il est possible de
le factoriser sous la forme H [z] = HPT[z]Hmin[z] où HPT[z] est un filtre passe-tout et Hmin[z] est
un filtre dont les pôles et les zéros sont à l’intérieur du cercle unité. On traitera chacun des zéros
α1 et α2 en s’inspirant de la question précédente.

5. Un filtre tel que Hmin[z] dont les zéros et les pôles sont à l’intérieur du cercle unité est dit filtre à
minimum de phase. Que peut on dire en terme de stabilité et de causalité pour l’inverse d’un filtre
à minimum de phase qui n’a pas de zéro sur le cercle unité ?

Réponses exercice: 23
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1. Réponse impulsionnelle :

hn =





1 si n = 0,

−2 si n = 1,

2 si n = 2.

Filtre non récursif, de réponse impulsionnelle finie, causal et stable.

2. Y [z] = H[z]X[z] et H[z] = 1− 2z−1 +2z−2. z0 = 0 est unique pôle ; α1 = 1+ i et α2 = 1− i sont les zéros. Les pôles
sont strictement à l’intérieur du cercle unité, d’où stabilité et causalité.

3. Φ(f) = Φ[ei2πf ] et donc :

|Φ(f)| =
∣∣∣∣
1− αe−i2πf

α∗ − e−i2πf

∣∣∣∣ = |e+i2πf |
∣∣∣∣
1− αe−i2πf

α∗e+i2πf − 1

∣∣∣∣ = 1

4.

H[z] = (1− α1z
−1)(1 − α2z

−1) =
1− α1z−1

α∗
1 − z−1

1− α2z−1

α∗
2 − z−1

(α∗
1 − z−1)(α∗

2 − z−1) = HPT[z]Hmin[z]

avec HPT[z] =
1−α1z

−1

α∗
1−z−1

1−α2z
−1

α∗
2−z−1 et Hmin[z] = (α∗

1 − z−1)(α∗
2 − z−1). (car |α1| > 1 et |α2| > 1).

5. Les pôles de 1/Hmin[z] sont les zéros de Hmin[z] et réciproquement. Dans la mesure où Hmin[z] a ses zéros tous
strictement à l’intérieur du cercle unité, les pôles de 1/Hmin[z] sont aussi tous strictement à l’intérieur du cercle
unité et Hmin[z] admet donc un inverse stable et causal.

Exercice 24: banc de filtres et analyse en sous-bandes Le but de cet partie est d’étudier
quelques propriétés simples à la base d’une analyse en sous-bandes.

1. On considère des signaux à temps discret (an)n∈Z, (bn)n∈Z, (cn)n∈Z. Le signal bn est obtenu à partir
de an par :

∀n ∈ Z bn = a2n

Les échantillons pairs uniquement sont conservés ; on parle d’opération de décimation d’un facteur

deux, ce que l’on note par le signe 2 ↓ . Le signal cn est obtenu à partir de bn par :

∀n ∈ Z

{
c2n = bn,

c2n+1 = 0.

Cette opération qui consiste à intercaler un zéro entre deux échantillons est notée 2 ↑ . L’opération

globale est résumée sur le schéma de la figure 4.

2 ↓ 2 ↑
an bn cn

Figure 4 – Sur- et sous-échantillonnage d’un facteur 2.

D’après la description ci-dessus, que valent les échantillons b0, b1, . . . , b9 et c0, c1, . . . , c9 en fonction
des échantillons du signal an.

2. Rappeler la définition de la transformée en z d’un signal. Démontrer la relation :

C[z] =
A[z] +A[−z]

2

où A[z], B[z] et C[z] sont les transformées en z respectives de an, bn et cn.

3. On considère maintenant le système de la figure 5 où H0[z], H1[z], H̃0[z], H̃1[z] représentent des
fonctions de transfert en z de filtres. En utilisant la question précédente, trouver le lien entre Y [z]
et X [z], transformées en z respectives de yn et xn.



January 30, 2026 25

H0[z] 2 ↓ 2 ↑ H̃0[z]

+

H1[z] 2 ↓ 2 ↑ H̃1[z]

xn yn

rn

sn

Figure 5 – Schéma de l’analyse en deux sous-bandes

4. Déduire de la question précédente que l’on retrouve exactement X [z] en sortie du système si et
seulement si les deux conditions suivantes sont vérifiées (on parle alors de reconstruction parfaite
du signal xn) :

{
H0[−z]H̃0[z] +H1[−z]H̃1[z] = 0 (7a)

H0[z]H̃0[z] +H1[z]H̃1[z] = 2 (7b)

5. On choisit dorénavant de se placer dans le cas :





H1[z] = H0[−z]

H̃0[z] = H0[z]

H̃1[z] = −H0[−z]

(8)

Montrer que (7a) est vérifiée et donner la contrainte qu’entraîne la condition (7b) sur H0[z].

6. On suppose que la réponse impulsionnelle de H0[z] est paire, càd que cette réponse impulsionnelle
vérifie : ∀n ∈ Z, hn = h−n.

(a) Justifier que H0[z] = H0[z
−1] dans ce cas.

(b) En déduire H1[z] = H0[−z−1].

(c) Rappeler le lien entre la transformée en z d’une réponse impulsionnelle et la réponse en fré-
quence. Déduire alors de la question précédente que H1(f) = H0(1/2 − f). On parle pour
H1[z] et H0[z] de filtres miroirs en quadrature.

(d) On suppose que H0[z] est un filtre passe-bas idéal de fréquence de coupure normalisée 1/4.
Tracer schématiquement le module de la réponse fréquentielle de H0[z] et de H1[z]. Le filtre
H1[z] est-il passe-bas, passe-haut ou passe-bande ?

7. On abandonne l’hypothèse de symétrie de la réponse impulsionnelle de H0[z]. En effectuant le choix
(8), il n’existe pas de solution de réponse impulsionnelle finie satisfaisant (7b). On affaiblit cette
contrainte en :

H0[z]H̃0[z] +H1[z]H̃1[z] = 2zk (9)

où k est un entier, k ≥ 1.

(a) Pour la reconstruction parfaite, que signifie la présence d’une puissance de z dans (9) vis à vis
de (7b) ?

(b) Montrer que pour k = 1, l’expression H0[z] =
1√
2
(1 + z) est une solution. On l’appelle filtre

de Haar.

8. Quel peut être l’intérêt d’un système tel que celui de la figure 5 qui permet de décomposer le signal
initial en deux signaux rn et sn ?
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Réponses exercice: 24

1. b0 = a0, b1 = a2, b2 = a4, . . . et c0 = a0, c1 = 0, c2 = a2, c3 = 0, c4 = a4, c5 = 0, . . ..

2.

C[z] =
∑

n

cnz
−n =

∑

p

(
c2pz

−2p + c2p+1z
−(2p+1)

)
=

∑

p

bpz
−2p = B[z2]

C[z] =
∑

n

cnz
−n =

∑

p

(
c2pz

−2p + c2p+1z
−(2p+1)

)
=

∑

p

a2pz
−2p

=
1

2


∑

p

a2pz
−2p +

∑

p

a2p+1z
−(2p+1) +

∑

p

a2p(−z)−2p +
∑

p

a2p+1(−z)−(2p+1)




=
A[z] + A[−z]

2

3.

Y [z] = H̃0[z]
H0[z]X[z] +H0[−z]X[−z]

2
+ H̃1[z]

H1[z]X[z] +H1x[−z]X[−z]

2

=
H̃0[z]H0[z] + H̃1[z]H1[z]

2
X[z] +

H̃0[z]H0[−z] + H̃1[z]H1[−z]

2
X[−z]

4. La question précédente indique que Y [z] = X[z] lorsque les conditions indiquées sont satisfaites.

5. La première condition est satisfaite et on vérifie que la deuxième devient :

H0[z]−H0[−z]2 = 2

6. (a) H0[z] =
∑

n hnz−n =
∑

n h−nz−n =
∑

n hnzn = H0[z−1]

(b) H1[z] = HO[−z] = H0[−z−1]

(c) D’après la question précédente H1[ei2πf = H0[eiπ−i2πf ] d’où H1(f) = H0(1/2 − f).

(d) Si H0[z] est passe-bas idéal de fréquence de coupure normalisée 1/4, H1[z] est passe-haut idéal, même fréquence
de coupure.

7. (a) La reconstruction parfaite est souhaitée à un retard près.

(b) Vérification facile.

8. Décomposition et codage en deux sous-bandes : l’une contenant plutôt les basses fréquences et l’autre les hautes
fréquences.

Exercice 25: transformée en cosinus discrète Cet exercice redémontre quelques propriétés
de la transformée de Fourier discrète (TFD) et introduit à partir de celle-ci la transformée en
cosinus discrète qui est très utilisée dans les algorithmes de compression d’images (normes JPEG,
MPEG,. . .).

1. On considère les N échantillons (xn)n=0,...,N−1 d’un signal à temps discret de durée finie. On rappelle
que la transformée de Fourier à temps discret (TFTD) de (xn)n=0,...,N−1 s’exprime par la somme
(ici finie) :

X(f) =

N−1∑

k=0

xke
−i2πkf

On notera (Xn)n=0,...,N−1 la TFD de (xn)n=0,...,N−1.

(a) Rappeler comment la TFD s’interprète comme les valeurs de la TFTD en N points de l’inter-
valle unité. Donner l’expression de (Xn)n=0,...,N−1. Montrer que l’on peut écrire :




X0

...
XN−1


 = W




x0

...
xN−1



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où W est la matrice W = (w(k−1)(l−1))k,l=1,...,N , avec w ∈ C à préciser.

(b) Calculer WW
H

. En déduire le lien entre
∑N−1

k=0 |xk|2 et
∑N−1

k=0 |Xk|2 ainsi que la formule de la
TFD inverse.

2. A partir de maintenant, on pose N = 2P et on suppose que (xn)n=0,...,2P−1 est réel. Quelle relation
de symétrie cela entraîne-t-il pour les coefficients Xk ?

3. On fait l’hypothèse supplémentaire que ∀n ∈ {0, . . . , 2P − 1} x2P−1−n = xn.
Montrer que cela permet d’écrire :

∀k ∈ {0, . . . , P} exp

(
−i

πk

2P

)
Xk = Ak

où Ak ∈ R est à préciser.

4. Que vaut XP ?

5. En déduire que ∀n ∈ {0, . . . , P − 1}, xn =
1

P

(
A0

2
+

P−1∑

k=1

Ak cos

(
πk

P
(n+

1

2
)

))
.

6. La transformée en cosinus discrète de (xn)n=0,...,P−1 est définie par les coefficients (Ãk)k=0,...,P−1

tels que :

Ãk =

{
A0

2
√
P

si k = 0,
Ak√
2P

si k ∈ {1, . . . , P − 1}.

Vérifier que cette transformation conserve l’énergie du signal, càd que
∑P−1

n=0 x2
n =

∑P−1
k=0 Ã2

k.

Réponses exercice: 25

1. Voir cours.

2. Pour tout k ∈ {1, . . . , 2P − 1} :

X2P−k =

2P−1∑

j=0

xje
−i2π

j(2P−k)
2P =

2P−1∑

j=0

xje
i2π jk

2P =




2P−1∑

j=0

x∗
j e

−i2π jk
2P




∗

=




2P−1∑

j=0

xje
−i2π jk

2P




∗

= X∗
k

3. Pour tout k ∈ {0, . . . , P} :

Xk =

P−1∑

j=0

xje
−i2π jk

2P +

2P−1∑

j=P

xje
−i2π jk

2P =

P−1∑

j=0

xje
−i2π jk

2P +

P−1∑

l=0

x2P−1−le
−i2π

(2P−1−l)k
2P

=

P−1∑

j=0

xj

(
e−i2π jk

2P + e−i2π
(2P−1−j)k

2P

)
=

P−1∑

j=0

xj

(
e−i2π jk

2P + ei2π
jk
2P ei2π

k
2P

)

= eiπ
k
2P

P−1∑

j=0

xj

(
e−i2π jk

2P e−iπ k
2P + ei2π

jk
2P eiπ

k
2P

)
= eiπ

k
2P

P−1∑

j=0

2xj cos

(
πk

P
(j +

1

2
)

)

et donc ∀k ∈ {0, . . . , P}, e−iπ k
2P Xk = Ak ∈ R avec Ak =

∑P−1
j=0 2xj cos

(
πk
P

(j + 1
2
)
)

4. XP = 0.

5. Puisque XP = 0, on a pour tout n ∈ {0, . . . , P − 1} :

xn =
1

2P

2P−1∑

k=0

Xke
i2π kn

2P =
1

2P
X0 +

1

2P

P−1∑

k=1

Xke
iπ kn

P +
1

2P

2P−1∑

k=P+1

Xke
iπ kn

P

=
1

2P
X0 +

1

2P

P−1∑

k=1

(
Xke

iπ kn
P +X2P−ke

iπ
(2P−k)n

P

)
=

1

2P
X0 +

1

2P

P−1∑

k=1

(
Xke

iπ kn
P +X∗

ke
−iπ kn

P

)

=
A0

2P
+

1

2P

P−1∑

k=1

(
Ake

iπ( kn
P

+ k
2P

) +Ake
−iπ( kn

P
+ k

2P
)
)
=

1

P

[
A0

2
+

P−1∑

k=1

Ak cos

(
πk

P
(n+

1

2
)

)]



January 30, 2026 28

6.

P−1∑

k=0

Ã2
k =

1

2P

[
A2

0

2
+

P−1∑

k=1

A2
k

]
=

1

2P

[
|X0|2
2

+

P−1∑

k=1

|Xk|2
]
=

1

4P

2P−1∑

k=0

|Xk|2 =
1

2

2P−1∑

k=0

x2
n =

P−1∑

k=0

x2
n

Exercice 26: transformée en z

1. Calculer la transformée en z de an = cos(nθ) si n ≥ 0 et 0 sinon.

2. Calculer la transformée en z de bn = n+ 1 si n ≥ 0 et 0 sinon.

3. Calculer la transformée en z de cn = n+1
n! si n ≥ 0 et 0 sinon.

4. Calculer la transformée en z de la suite causale définie par la relation de récurrence ∀n ≥ 0, dn =
2dn−1 − dn−2 + 1 (on appelle suite causale une suite telle que dn = 0 pour tout n < 0). En déduire
l’expression de dn en fonction de n.

Réponses exercice: 26 On rappelle que

∀x, |x| < 1 :
1

1− x
=

∑

n≥0

xn et par dérivations successives :

1

(1− x)2
=

∑

n≥1

nxn−1 =
∑

n≥0

(n+ 1)xn

1

(1− x)3
=

∑

n≥2

n(n− 1)

2
xn−2 =

∑

n≥0

(n+ 2)(n+ 1)

2
xn

1.

A[z] =
∑

n≥0

cos(nθ)z−n =
∑

n≥0

einθ + e−inθ

2
z−n =

1

2

∑

n≥0

(eiθz−1)
n
+

1

2

∑

n≥0

(e−iθz−1)
n

et donc pour |z|>1 : A[z] =
1

2

[
1

1− eiθz−1
+

1

1− e−iθz−1

]
=

1

2

[
z

z − eiθ
+

z

z − e−iθ

]

=
z2 − z cos θ

z2 − 2z cos θ + 1
.

2. D’après les rappels ci-dessus, il vient :

∀z, |z| > 1 : B[z] =
∑

n≥0

(n+ 1)z−n =
1

(1 − 1/z)2
=

z2

(z − 1)2
.

3. En utilisant la règle de d’Alembert, on constate que C[z] converge sur C∗.

C[z] =
∑

n≥0

n+ 1

n!
z−n =

∑

n≥1

1

(n− 1)!
z−n +

∑

n≥0

z−n

n!
= z−1

∑

n≥0

1

n!
z−n +

∑

n≥0

z−n

n!
= (z−1 + 1)e1/z .

4. On remarquera que la suite (dn)n∈Z est entièrement définie puisque dn = 0 pour n < 0 et la relation de récurrence
définit ensuite les valeurs pour n ≥ 0 : d0 = 1, d1 = 3, d2 = 6, . . . .

En prenant la transformée en z de la relation de récurrence (qui s’écrit dn = 2dn−1 − dn−2 + 1(n ≥ 0)), il vient
D[z] = 2z−1D[z]− z−2D[z] +

∑
n≥0 z

−n, valable sur le domaine |z| > 1. Par suite :

Sur le domaine |z| > 1 : D[z] =
1

1− 2z−1 + z−2

1

1− z−1
=

1

(1− z−1)3
.

On peut alors en déduire l’expression de dn pour tout n par transformée en z inverse. D’après les rappels ci-dessus :

∀z, |z| > 1 : D[z] =
1

(1 − z−1)3
=

∑

n≥0

(n+ 2)(n+ 1)

2
z−n

et donc dn =
(n+2)(n+1)

2
si n ≥ 0 et est nul pour n < 0.
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Exercice 27: transformée de Fourier temps discret Calculer la transformée de Fourier temps
discret du signal :

xn =

{
1 si n = 0, 1, . . . , N − 1

0 sinon.

Réponses exercice: 27

X(f) =
∑

n∈Z

xne
−i2πnf

=

N−1∑

n=0

e−i2πnf =
1− e−i2πNf

1− e−i2πf

=
e−iπNf

e−iπf

sin(πNf)

sin(πf)
= eiπ(1−N)f sin(πNf)

sin(πf)

Exercice 28: fonction d’autocorrélation / densité spectrale d’énergie Soit le signal à
temps discret (α > 0 est une constante)

xn =

{
e−αn si n ≥ 0,

0 si n < 0 .
(10)

1. Montrer que xn est un signal d’énergie finie et calculer son énergie Ex.

2. Calculer la fonction d’autocorrélation en énergie γx(k) et retrouver la valeur de Ex.

3. Calculer la densité spectrale d’énergie Γx(f).

4. Retrouver Ex à partir de Γx(f).

5. Exprimer (sans calculer) l’énergie du signal contenue dans la bande de fréquences [−1/4, 1/4].

Réponses exercice: 28

1. Ex =
∑+∞

n=0(e
−αn)2 = 1

1−e−2α .

2.

∀k ≥ 0, γx(k) =

+∞∑

n=k

e−αne−α(n−k) =

+∞∑

p=0

e−α(k+p)e−αp =
e−αk

1− e−2α

∀k ≤ 0, γx(k) =

+∞∑

n=0

e−αne−α(n−k) =
eαk

1− e−2α
et donc finalement :

∀k ∈ Z, γx(k) =
e−α|k|

1− e−2α
. On note que Ex = γx(0) .

3. On peut faire le calcul au choix des deux façons suivantes :

Γx(f) =
∑

k∈Z

γx(k)e
−i2πkf =

1

1− e−2α

[
1 +

∞∑

k=1

e−αke−i2πfk +
∞∑

k=1

e−αke+i2πfk

]

=
1

1− e−2α

[
1 +

e−αe−i2πf

1− e−αe−i2πf
+

e−αe+i2πf

1− e−αe+i2πf

]

=
1

1 + e−2α − 2e−α cos(2πf)

Γx(f) = |X(f)|2 =

∣∣∣∣∣∣

∑

n∈Z

xne
−i2πnf

∣∣∣∣∣∣

2

=

∣∣∣∣∣

∞∑

n=0

e−αne−i2πf

∣∣∣∣∣

2

=

∣∣∣∣
1

1− e−(α+i2πf)

∣∣∣∣
2

=

∣∣∣∣
1

(1− e−αe−i2πf))(1 − e−αe+i2πf))

∣∣∣∣

=
1

1 + e−2α − 2e−α cos(2πf)
.
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4.

Ex =

∫ 1

0
Γx(f) df

=
1

i2π

∮
1

(1− e−αz−1)(1 − e−αz)

dz

z

=
1

i2π

∮
e+α

(z − e−α)(e+α − z)
dz

= Res

[
e+α

(z − e−α)(e+α − z)
, z = e−α

]
=

e+α

e+α − e−α

=
1

1− e−2α

5.
∫ 1/4
−1/4

Γx(f) df

Exercice 29: transformée en z Calculer la transformée en z des signaux :

1. (un)n∈Z défini par un = 1, n ≥ 0 et un = 0, n < 0 (échelon).

2. (vn)n∈Z défini par vn = nun.

Réponses exercice: 29

1. U [z] = 1
1−z−1 sur le domaine |z| > 1.

2. V [z] =
∑

n≥0 nz
−n = z

∑
n≥0 nz

−n−1 = −z d
dz

∑
n≥0 z

−n = −z d
dz

(
1

1−z−1

)
= z−1

(1−z−1)2
sur le domaine

défini par |z| > 1.



January 30, 2026 31

Signaux aléatoires

Exercice 30: processus flip-flop

1. Soit un processus de Poisson homogène sur R de paramètre λ : n(t) est défini comme le nombre
d’événements survenus entre l’instant 0 et l’instant t. On rappelle que n(t) est défini par les trois
propriétés suivantes :

(i) n(0) = 0,

(ii) n(t) est un processus à accroissements indépendants,

(iii) pour t > s, P(n(t)− n(s) = k) = (λ(t−s))k

k! e−λ(t−s) si k ∈ N et 0 sinon.

(a) Calculer E{n(t)}.
(b) Calculer E{n(t)

(
n(t)− 1

)
} et en déduire E{n(t)2}.

(c) n(t) est-il un processus stationnaire ?

2. On définit le processus flip-flop comme le signal aléatoire x(t) donné par P(x(0) = 1) = P(x(0) =
−1) = 1/2 et x(t) = (−1)n(t)x(0).

(a) Calculer E{x(t)} (t ∈ R).

(b) Calculer E{x(t)x(t − τ)} (t ∈ R, τ ∈ R).

(c) En déduire que x(t) est un signal aléatoire stationnaire au sens large, centré et de fonction
d’auto-corrélation e−2λ|τ |.

Réponses exercice: 30

1. (a) Posons ν = λt. Alors n(t) ∼ P(ν) (loi de Poisson de paramètre ν) et donc :

E{n(t)} =
∞∑

k=0

kP(n(t) = k) =
∞∑

k=0

k
νk

k!
e−ν = ν

∞∑

k=1

νk−1

(k − 1)!
e−ν

Donc E{n(t)} = λt.

(b)

E{n(t)
(
n(t)− 1

)
} =

∞∑

k=0

k(k − 1)P(n(t) = k) = ν2
∞∑

k=2

νk−2

(k − 2)!
e−ν = ν2 d’où : E{n(t)2} = ν2 + ν

Donc E{n(t)2} = (λt)2 + λt.

(c) n(t) n’est pas stationnaire.

2. (a)

P(x(t) = 1) = P(x(0) = 1)P(x(t) = 1/x(0) = 1) + P(x(0) = −1)P(x(t) = 1/x(0) = −1)

Or : P(x(0) = 1) = P(x(0) = −1) = 1/2 et de plus :

P(x(t) = 1/x(0) = 1) = P(n(t)− n(0) est pair) =
∞∑

p=0

(λ|t|)2pe−λ|t|

(2p)!
=

ch(λ|t|)
eλ|t|

P(x(t) = 1/x(0) = −1) = P(n(t) − n(0) est impair) =
∞∑

p=0

(λ|t|)2p+1e−λ|t|

(2p + 1)!
=

sh(λ|t|)
eλ|t|

Il vient alors P(x(t) = 1) = 1/2 et de même P(x(t) = −1) = 1/2, d’où E{x(t) = 0}.
(b)

E{x(t)x(t − τ)} =1.[P(x(t) = 1 ∩ x(t − τ) = 1) + P(x(t) = −1 ∩ x(t − τ) = −1)]

− 1.[P(x(t) = 1 ∩ x(t − τ) = −1) + P(x(t) = −1 ∩ x(t− τ) = 1)]

Or : P(x(t) = 1 ∩ x(t − τ) = 1) = P(x(t) = 1)P(x(t − τ) = 1/x(t) = 1)

= P(x(t) = 1)P(n(t) − n(t− τ) est pair) =
1

2

ch(λ|τ |)
eλ|τ |

De même : P(x(t) = −1 ∩ x(t− τ) = −1) =
1

2

ch(λ|τ |)
eλ|τ |

P(x(t) = 1 ∩ x(t− τ) = −1) =
1

2

sh(λ|τ |)
eλ|τ |

P(x(t) = −1 ∩ x(t − τ) = 1) =
1

2

sh(λ|τ |)
eλ|τ |

Il vient finalement E{x(t)x(t − τ)} = e−2λ|τ |.
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(c) Résulte de ce qui précède.

Exercice 31: processus de Wiener et Ornstein-Uhlenbeck

1. Soit w(t) un processus de Wiener (ou mouvement brownien). On rappelle que w(t) est défini par
les trois propriétés suivantes :

(i) w(0) = 0,

(ii) w(t) est un processus à accroissements indépendants,

(iii) pour t > s, w(t) − w(s) ∼ N (0, t − s) (où N (0, t − s) représente la loi normale de moyenne
nulle et variance t− s).

(a) Calculer E{w(t)} (t ∈ R).

(b) Que vaut E{w(t)2} ? w(t) est-il un signal stationnaire ?

(c) Pour t2 ≥ t1 ≥ 0, montrer que E{w(t2)w(t1)} = E{w(t1)2} et en déduire E{w(t2)w(t1)}
d’après ce qui précède.

2. On définit le processus de Ornstein-Uhlenbeck de la façon suivante : x(t) = e−atw(e2at) où w(t) est
un processus de Wiener et a > 0 fixé.

(a) Calculer E{x(t)} (t ∈ R).

(b) Calculer E{x(t)x(t − τ)} (t ∈ R, τ ∈ R).

(c) En déduire que x(t) est un signal aléatoire stationnaire au sens large, centré et de fonction
d’auto-corrélation e−a|τ |.

Réponses exercice: 31

1. (a) w(t) ∼ N (0, t) donc E{w(t)} = 0.

(b) Pour la même raison, E{w(t)2} = t et on constate que w(t) n’est pas stationnaire.

(c) Pour t2 ≥ t1 ≥ 0, l’indépendance des accroissements donne E{(w(t2) − w(t1))(w(t1) − w(0))} = E{(w(t2) −
w(t1))}E{(w(t1)−w(0))} et cette dernière quantité est nulle compte tenu de la distribution des accroissements.
Enfin, comme w(0) = 0, il vient : E{(w(t2)w(t1)} = E{w(t1)2} = t1.

2. (a) E{x(t)} = E{e−atw(e2at)} = 0 d’après les propriétés de w(t).

(b)

E{x(t)x(t − τ)} = E{e−atw(e2at)e−a(t−τ)w(e2a(t−τ))}
= e−2ateaτE{w(e2at)w(e2a(t−τ))} = e−2ateaτemin(2at,2a(t−τ))

= e−a|τ |

(c) Résulte de ce qui précède. Remarquer que le processus de Ornstein-Uhlenbeck a les mêmes statistiques d’ordre
deux que le processus flip-flop alors que ce sont deux signaux aléatoires très différents.

Exercice 32: stationnarité, ergodicité (temps continu) On considère le signal aléatoire à
temps continu x(t) = A cos(2πf0t + φ) où A et f0 sont des constantes réelles strictement positives
et φ est une variable aléatoire équirépartie sur l’intervalle [0, 2π]. On désigne par E{.} l’espérance
mathématique et par < . > la moyenne temporelle d’une expression quelconque.

1. Calculer E{x(t)} et < x(t) >.

2. Calculer E{x(t)x(t − τ)} et < x(t)x(t − τ) >. Conclusion.

3. Quelle est la densité spectrale de puissance Sx(f) de x(t) ? Quelle est la puissance du signal ?

Réponses exercice: 32 Cf. poly.

Exercice 33: stationnarité, ergodicité (temps continu) On désigne par E{.} l’espérance
mathématique et par < . > la moyenne temporelle d’une expression quelconque (càd que par

définition : < z(t) >, limT→∞
1
2T

∫ T

−T
z(t) dt).
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Soit le signal aléatoire à temps continu :

x(t) = A1e
i2πf1t +A2e

i2πf2t

où f1, f2 sont des constantes réelles strictement positives et A1, A2 sont des variables aléatoires à
valeurs dans C. A1 et A2 sont supposées centrées (E{A1} = E{A2} = 0).

1. Calculer E{x(t)} et < x(t) >. Conclusion.

2. (a) On suppose de plus que A1 et A2 sont décorrélées et telles que |A1| = |A2| = 1. Calculer
E{x(t)x(t − τ)∗} et < x(t)x(t − τ)∗ >. Conclusion.

(b) On suppose ici que A1 et A2 sont corrélées (et donc non indépendantes). Calculer à nou-
veau E{x(t)x(t − τ)∗} et montrer qu’il apparaît des termes supplémentaires. Le signal est-il
stationnaire dans ce cas ?

3. Dans le cas où le signal est stationnaire au sens large, calculer la densité spectrale de puissance
Sx(f) de x(t) ? Quelle est la puissance du signal ?

Réponses exercice: 33

1. E{x(t)} =< x(t) >= 0. Le signal est stationnaire et ergodique au 1er ordre.

2. (a) E{x(t)x(t − τ)∗} =< x(t)x(t − τ)∗ >= ei2πf1τ + ei2πf2τ . Le signal est stationnaire et ergodique au 2nd ordre
(remarquer la nécessité de |A1| = |A2| = 1 pour l’ergodicité.

(b) Si A1 et A2 sont corrélées, non stationnarité (sauf pour f1 = f2) en raison des termes croisés supplémentaires
(qui dépendent de t :

E{A1A
∗
2}ei2π[(f1−f2)t+f2τ ] + E{A∗

1A2}ei2π[(f2−f1)t+f1τ ]

3. Sx(f) = δ(f − f1) + δ(f − f2) ; Px = Rx(0) = 2.

Exercice 34: filtrage, bruit blanc On considère le signal à temps continu x(t) = a cos(2πf0t+
φ) + b(t) où a et f0 sont des constantes réelles, φ est une variable aléatoire uniformément répartie
sur l’intervalle [0, 2π] et b(t) est un bruit blanc (centré) dont la densité spectrale est notée N0

2 . Les
deux processus a cos(2πf0t+ φ) et b(t) sont supposés indépendants.

1. Montrer que le signal x(t) est stationnaire au sens large et calculer sa fonction d’autocorrélation
γx(τ), τ ∈ R.

2. Calculer Γx(f) la densité spectrale de puissance du signal x(t).

3. Le signal x(t) est appliqué en entrée d’un filtre dont la réponse fréquentielle vaut :

H(f) =

{
1 si f ∈ [f0 −B/2, f0 +B/2] ∪ [−f0 −B/2,−f0 +B/2]

0 sinon.

Calculer la puissance du signal y(t) en sortie du filtre.

Réponses exercice: 34

1. En utilisant l’indépendance des termes croisés et le fait que le bruit est centré, il vient :

E{x(t)x(t − τ)} = E{a2 cos(2πf0t + φ) cos(2πf0(t − τ) + φ)}+ E{b(t)b(t − τ)}

= E{a
2

2

(
cos(4πf0(t− τ/2) + 2φ) + cos(2πf0τ)

)
}+ E{b(t)b(t − τ)}

φ étant uniformément distribuée sur [0, 2π] et b(t) étant blanc, le signal est stationnaire de fonction d’autocorrélation :

γx(τ) =
a2

2
cos(2πf0τ) +

N0

2
δ(τ)

2. La densité spectrale de puissance est la transformée de Fourier de l’expression précédente :

Γx(f) =
a2

4
(δ(f − f0) + δ(f + f0)) +

N0

2
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3. En notant Γy(f) la densité spectrale de y(t), la puissance s’écrit :

Py =

∫ +∞

−∞
Γy(f) df =

∫ −f0+B/2

−f0−B/2
Γx(f) df +

∫ f0+B/2

f0−B/2
Γx(f) df =

a2

2
+BN0

Exercice 35: filtrage d’un signal aléatoire On considère un signal aléatoire à temps continu
x(t) que l’on suppose réel, centré et stationnaire au sens large. On suppose qu’au cours d’une
transmission, un récepteur reçoit le signal y(t) donné par :

y(t) = x(t) + ρx(t− θ)

où ρ et θ sont des constantes réelles. On note γx(τ) , E{x(t)x(t− τ)} la fonction d’autocorrélation
de x(t).

1. Rappeler la définition de la stationnarité au sens large. Calculer E{y(t)} puis la fonction d’autocor-
rélation de y(t) (notée γy(τ) ) en fonction de celle de x(t). Le signal y(t) est-il stationnaire au sens
large ?

2. Exprimer la puissance E{y(t)2} en fonction de γx(0) et γx(θ).

3. Calculer la densité spectrale de y(t) (notée Γy(f)) en fonction de celle de x(t) (notée Γx(f)).

4. Justifier que y(t) est obtenu par filtrage de x(t). Trouver la réponse en fréquence H(f) du filtre et
retrouver l’expression précédente de Γy(f) à l’aide de la formule des interférences.

5. On suppose que x(t) est un signal bande étroite autour de la fréquence f0. y(t) est-il également
bande étroite ? Pourquoi ?

6. On suppose que x(t) s’écrit x(t) = cos(2πf0t + ϕ) où ϕ est une variable aléatoire équirépartie sur
[0, 2π]. Justifier la stationnarité de x(t) dans ce cas.

Réponses exercice: 35

1. E{y(t)} = 0. γy(τ) , E{y(t)y(t − τ)} = (1 + ρ2)γx(τ) + ρ(γx(τ + θ) + γx(τ − θ))

2. E{y(t)2} = γy(0) = (1 + ρ2)γx(0) + 2ργx(θ)

3. Γy(f) = [(1 + ρ2) + 2ρ cos(2πθf)]γx(f)

4. L’équation donnant y(t) en fonction de x(t) est un exemple classique de système linéaire et invariant dans le temps :
c’est donc une opération de filtrage et la réponse en fréquence est : H(f) = 1 + ρe−i2πθf . La relation Γy(f) =
|H(f)|2Γx(f) redonne bien l’expression de la question précédente.

5. y(t) est aussi bande étroite : le support du spectre de y(t) est en effet contenu dans celui de x(t) d’après les relations
des deux questions précédentes.

6. Voir poly.

Exercice 36: modulation d’un signal aléatoire bande limitée On considère le signal suivant
à temps continu :

x(t) = a(t)ei2πf0t

où f0 est une constante et a(t) est un signal à valeurs complexes.

1. On suppose que a(t) est un signal déterministe dont la transformée de Fourier existe et est notée
A(f).

(a) x(t) est-il un signal déterministe ou aléatoire ?

(b) Exprimer X(f), la transformée de Fourier de x(t) en fonction de A(f).

(c) Si a(t) est à bande limitée [−B,B], quelle est la bande occupée par x(t) ?
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2. On suppose maintenant que a(t) est un signal aléatoire centré stationnaire au sens large dont la
fonction d’autocorrélation est notée γa(τ) , E{a(t)a∗(t− τ)}.
(a) Calculer la fonction d’autocorrélation γx(τ) de x(t) et justifier la stationnarité au sens large

de x(t).

(b) Calculer Γx(f), la densité spectrale de puissance de x(t) en fonction de Γa(f), densité spectrale
de puissance de a(t). Si a(t) est à bande limitée [−B,B] (càd si Γa(f) est nul en dehors de
cette bande), que peut-on dire de x(t) ?

Réponses exercice: 36

1. (a) x(t) est déterministe.

(b) X(f) = A(f − f0) (propriété de modulation de la transformée de Fourier)

(c) Bande occupée par x(t) : [f0 −B, f0 + B].

2. (a) γx(τ) = γa(τ)ei2πf0τ .

(b) Γx(f) = Γa(f − f0). Si a(t) à bande limitée [−B,B], la bande occupée par x(t) est [f0 − B, f0 + B].

Exercice 37: filtrage, bruit blanc

1. On considère le système qui à un signal x(t) à temps continu associe le signal y(t) défini par :

y(t) =
1

T

∫ t

t−T

x(u) du

(a) Montrer que ce système correspond à un filtre (au sens : système linéaire et invariant). Quelle
est sa réponse impulsionnelle h(t) ?

(b) Le filtre est-il stable ? causal ?

(c) Quelle est la réponse en fréquence H(f) du filtre ?

2. Le filtre précédent est attaqué en entrée par le signal aléatoire à temps continu x(t) = A cos(2πf0t+
φ) + b(t) où A et f0 sont des constantes, φ est une variable aléatoire répartie uniformément sur
[0, 2π], b(t) est un bruit blanc de densité spectrale Γb(f) =

N0

2 . Les processus A cos(2πf0t + φ) et
b(t) sont de plus indépendants.

(a) Calculer la densité spectrale de puissance Γx(f) du signal x(t) en entrée.

(b) En déduire la densité spectrale de puissance Γy(f) du signal y(t) en sortie.

3. Calculer la puissance du signal y(t) à partir de sa densité spectrale (indication : on pourra utiliser
la formule de Parseval pour l’une des intégrales).

4. On donne la transformée de Fourier inverse (sinc(πfT ))2
TF−1

−→ 1
T Λ2T (t) où

Λ2T (t) =

{
1− |t|/T si |t| ≤ T,

0 sinon.

(a) En déduire la fonction d’auto-corrélation γy(τ) de y(t).

(b) Vérifier que l’on retrouve la puissance du signal y(t) trouvée à la question 3.

Réponses exercice: 37

1. (a) h(t) =

{
1/T si t ∈ [0, T ],

0 sinon.
.

(b) Stable et causal.
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(c) H(f) = e−iπfT sinc(πfT ).

2. (a) L’autocorrélation de x(t) vaut γx(τ) =
A2

2
cos(2πf0τ) +

N0
2
δ(τ) et la densité spectrale de puissance vaut donc

Γx(f) =
A2

4

(
δ(f + f0) + δ(f − f0)

)
+ N0

2

(b)

Γy(f) = |H(f)|2Γx(f) = sinc2(πfT )

[
A2

4

(
δ(f + f0) + δ(f − f0)

)
+

N0

2

]

=
A2

4
sinc2(πf0T )δ(f + f0) +

A2

4
sinc2(πf0T )δ(f − f0) + sinc2(πfT )

N0

2

3. En remarquant à l’aide de la relation de Parseval que
∫
R
sinc2(πfT ) df = 1/T , on obtient la puissance Py =

∫
R
Γy(f) df = N0

2T
+ A2

2
sinc2(πf0T )

4. (a) γy(t) =
A2

2
sinc2(πf0T ) cos(2πf0t) +

N0
2T

Λ2T (t)

(b) Py = γy(0).

Exercice 38: filtre adapté (temps continu) On considère un signal déterministe s(t) qui
modélise une impulsion (par exemple radar/sonar). Cette impulsion est réfléchie sur une cible et on
suppose que le signal reçu en retour (par exemple sur l’antenne de réception) s’écrit :

x(t) = s(t− τ) + b(t)

où τ ≥ 0 représente un retard et b(t) est un bruit blanc centré. Un traitement est appliqué au signal
x(t) en réception afin de maximiser le critère de "rapport signal sur bruit". Plus précisément, on
applique à x(t) un filtre dont la réponse impulsionnelle est notée h(t) et la réponse en fréquence est
notée H(f).

1. Rappeler comment s’exprime l’énergie Es du signal s(t) ?

2. Si x̃(t) est la sortie du filtre h(t) lorsque x(t) est en entrée, justifier en deux mots que l’on puisse

écrire x̃(t) = s̃(t− τ) + b̃(t) où s̃(t) et b̃(t) sont les sorties du même filtre h(t) avec respectivement
s(t) et b(t) en entrée.

3. Exprimer s̃(t) en fonction de H(f) et S(f) et en déduire s̃(0) =
∫
H(f)S(f) df .

4. On note N0/2 la densité spectrale de puissance de b(t).

(a) Que vaut la densité spectrale de puissance de b̃(t) (notée Γb̃(f)) ?

(b) En déduire la puissance de b̃(t). Que vaut E{|̃b(τ)|2} ?

5. On désire maximiser le critère "rapport signal sur bruit" en sortie du filtre à l’instant τ . Ce critère
est défini par :

(RSB)τ =
|s̃(0)|2

E{|̃b(τ)|2}

(a) Exprimer (RSB)τ en fonction de H(f), S(f) et N0.

(b) Appliquer l’inégalité de Cauchy-Schwarz au numérateur pour montrer que (RSB)τ ≤ 2Es

N0
.

(c) Montrer que (RSB)τ est maximal lorsque H(f) = KS(f)∗, où K est une constante que l’on
peut choisir librement.

6. Nous supposons dans la suite que H(f) = S(f)∗. Quelle est la réponse impulsionnelle h(t) ? Le filtre
correspondant est appelé filtre adapté.

7. On suppose maintenant que le bruit est identiquement nul. Montrer que le calcul de la sortie du
filtre adapté correspond à l’auto-corrélation du signal s(t). Commentaire éventuel ?
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Réponses exercice: 38

1. Voir cours.

2. Linéarité et invariance dans le temps.

3. s̃(t) =
∫
H(f)S(f)e+i2πft df et s̃(0) =

∫
H(f)S(f) df .

4. (a) Γ
b̃
(f) = N0

2
|H(f)|2.

(b) Puissance : E{|̃b(τ)|2} =
∫ N0

2
|H(f)|2 df .

5. (a) facile.

(b) facile.

(c) cas d’égalité de l’inégalité de Cauchy-Schwarz.

6. h(t) = s(−t)∗.

7. Si b(t) = 0, on peut alors écrire :

x̃(t) = h(t) ⋆ x(t) =

∫
h(θ)x(t − θ) dt =

∫
s(−θ)∗s(t− θ − τ) dθ

=

∫
s(θ)∗s(t − τ + θ) dθ = γs(t − τ)

Exercice 39: stationnarité, ergodicité, bruit blanc (temps discret)

1. Soit le signal aléatoire (complexe) à temps discret xn = ei(ωn+φ) où ω ∈ R et φ est une variable
aléatoire uniformément distribuée sur [0, 2π].

(a) Calculer E{xn} et E{xnx
∗
n−k}. Que dire de la stationnarité ? Que vaut l’auto-corrélation γx(k)

du signal xn ?

(b) Calculer :

lim
N→∞

1

2N + 1

N∑

n=−N

xn et : lim
N→∞

1

2N + 1

N∑

n=−N

xnx
∗
n−k

Que peut-on dire concernant l’ergodicité ?

2. On considère maintenant le signal yn = ei(ω1n+φ1) + ei(ω2n+φ2) où ω1, ω2 sont fixés dans R et φ1, φ2

sont des variables aléatoires indépendantes et uniformes sur [0, 2π].

(a) yn est-il stationnaire ? Calculer E{yn} et γy(k) , E{yny∗n−k}.
(b) Calculer la puissance de yn.

3. Soit le signal zn = yn + en où en est un bruit blanc centré, indépendant de yn et de puissance σ2
e .

Calculer la puissance, la moyenne et l’autocorrélation de zn.

Réponses exercice: 39

1. (a) E{xn} = 0 ; E{xnx∗
n−k} = eiωk. (xn)n∈Z est stationnaire au sens large et γx(k) = eiωk.

(b)

lim
N→∞

1

2N + 1

N∑

n=−N

xn =

{
0 si ω 6= 2πℓ, ℓ ∈ Z

eiφ si ω 6= 2πℓ, ℓ ∈ Z
et : lim

N→∞
1

2N + 1

N∑

n=−N

xnx
∗
n−k = eiωk

Signal ergodique au sens large pour ω 6= 2πℓ, ℓ ∈ Z.

2. (a) yn est stationnaire, E{yn} = 0, γy(k) = eiω1k + eiω2k.

(b) Py = 2.

3. Pz = 2 + σ2
e , E{zn} = 0 ; E{znz∗n−k} = eiω1k + eiω2k + σ2

eδk.

Exercice 40: filtrage d’ordre un d’une suite aléatoire
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1. On considère un filtre à temps discret causal défini par la relation suivante entre son entrée (xn)n∈Z

et sa sortie (yn)n∈Z :

∀n yn = xn +
1

2
yn−1

(a) Déterminer la fonction de transfert en z du filtre causal ci-dessus, que l’on notera H [z].

(b) Préciser et justifier le domaine de convergence associé à H [z]. Indiquer si le filtre est stable en
justifiant.

(c) Calculer la réponse en fréquence H(f) du filtre.

(d) Calculer la réponse impulsionnelle (hn)n∈Z.

2. On suppose qu’en entrée du filtre précédent, (xn)n∈Z est un signal aléatoire, centré, stationnaire au
sens large et de fonction d’auto-corrélation :

γx(k) =





1 si k = 0,
1
2 si k = 1 ou k = −1,

0 sinon.

(a) Calculer la densité spectrale Γx(f) de (xn)n∈Z.

(b) Calculer la densité spectrale Γy(f) de (yn)n∈Z.

(c) Rappeler la définition et donner la valeur de la puissance de (xn)n∈Z.

(d) Exprimer la puissance de (yn)n∈Z en fonction de la densité spectrale de puissance, puis effectuer
le calcul (indication : on pourra interpréter l’intégrale comme une intégrale de la variable complexe

z le long du cercle unité).

Réponses exercice: 40

1. (a) H[z] = 1

1− z−1

2

.

(b) Domaine de convergence {z ∈ C | |z| > 1/2} (correspondant au filtre causal). Le filtre est stable.

(c) H(f) = H[ei2πf ] = 1
1− 1

2
e−i2πf

.

(d) hn = 0 si n < 0 et hn = 1
2n

si n ≥ 0.

2. (a) Γx(f) = 1 + cos(2πf)

(b) Γy(f) = |H(f)|2Γx(f) =
1+cos(2πf)

(1− 1
2
e−i2πf )(1− 1

2
e+i2πf )

=
1+cos(2πf)

5/4−cos(2πf)
de (yn)n∈Z.

(c) Px = E{|xn|2} = γx(0) = 1

(d) En notant
∮

l’intégrale le long du cercle unité et Γx[z], Γy[z] les transformées en z respectives des autocorré-
lations γx(k), γy(k) :

Py =

∫ 1

0
Γy(f) df =

∮
Γy [z]

dz

i2πz

=

∮
H[z]H[z−1]Γx[z]

dz

i2πz

=
1

i2π

∮
1 + z+z−1

2

z(1− z−1

2
)(1 − z

2
)
dz =

1

i2π

∮ −(z + 1)2

z(z − 1
2
)(z − 2)

dz

= Res

[
−(z + 1)2

z(z − 1
2
)(z − 2)

, z = 0

]
+ Res

[
−(z + 1)2

z(z − 1
2
)(z − 2)

, z = 1/2

]

= −1 + 3 = 2

Exercice 41: filtrage à temps discret d’un bruit blanc On considère un filtre à temps discret
causal défini par la relation suivante entre son entrée (xn)n∈Z et sa sortie (yn)n∈Z :

∀n yn = xn +
1

2
yn−1
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1. Déterminer la fonction de transfert en z du filtre causal ci-dessus, que l’on notera H [z].

2. Préciser et justifier le domaine de convergence associé à H [z]. Indiquer si le filtre est stable en
justifiant.

3. Calculer la réponse en fréquence H(f) du filtre.

4. On suppose qu’en entrée du filtre précédent, (xn)n∈Z est un bruit blanc centré de puissance σ2
x.

Préciser ce que vaut la densité spectrale Γx(f) de (xn)n∈Z et calculer la densité spectrale Γy(f) de
(yn)n∈Z.

Réponses exercice: 41

1. H[z] = 1

1− z−1

2

.

2. Le domaine de convergence est D = {z ∈ C | |z| > 1/2} ∪ {∞} (filtre causal, D est le complémentaire d’un disque).
Le filtre est stable car D contient le cercle unité.

3. H(f) = H[ei2πf ] = 1
1− 1

2
e−i2πf

4. Γx(f) = σ2
x et Γy(f) = |H(f)|2Γx(f) =

σ2
x

(1− 1
2
e−i2πf )(1− 1

2
e+i2πf )

=
σ2
x

5/4−cos(2πf)
.

Exercice 42: filtrage d’un signal aléatoire (temps discret) Soit un signal aléatoire à temps
discret (xn)n∈Z réel, centré et tel que pour tout k ∈ Z, E{xnxn−k} = δk (où par définition δk = 0
si k 6= 0 et δ0 = 1).

1. Le signal (xn)n∈Z est-il stationnaire au sens large ? Si oui, quelle est sa fonction d’autocorrélation ?

2. On filtre le signal (xn)n∈Z par un filtre dont la réponse impulsionnelle est donnée par :

hn =

{
an si n ≥ 0,

0 si n < 0,

où a est réel, |a| < 1. Donner l’expression de la sortie (yn)n∈Z du filtre et en déduire E{yn}.

3. Calculer la fonction d’autocorrélation γy(k), k ∈ Z du signal (yn)n∈Z (on pourra faire le calcul pour
k ≥ 0 et utiliser la symétrie de la fonction d’autocorrélation).

4. Calculer la densité spectrale de (yn)n∈Z dont on rappelle la définition dans le cas présent : Γy(f) =∑
k∈Z

γy(k)e
−i2πkf .

5. Vérifier que la densité spectrale obtenue précédemment correspond au résultat donné par la formule
liant les densités spectrales en entrée et en sortie d’un filtre.

Réponses exercice: 42

1. (xn)n∈Z est stationnaire au sens large de fonction d’autocorrélation γx(k) = δk (k ∈ Z).

2. Pour tout n ∈ Z, yn =
∑

k akxn−k et donc E{yn} =
∑

k akE{xn−k} = 0.

3. Pour k ≥ 0 fixé,

γy(k) = E{ynyn−k} = E{
∞∑

p=0

apxn−p

∞∑

q=0

aqxn−k−q} =
∞∑

p=0

∞∑

q=0

ap+q
E{x(n− p)x(n− k − q)}

=
∞∑

p=0

∞∑

q=0

ap+qδk+q−p =
∞∑

q=0

ak+2q =
ak

1− a2

et par symétrie, pour tout k ∈ Z, γy(k) =
a|k|

1−a2
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4.

Γy(f) =
∑

k∈Z

γy(k)e
−i2πkf =

∑

k∈Z

a|k|

1− a2
e−i2πkf =

1

1− a2

[
1 +

∞∑

k=1

ake−i2πkf + ake+i2πkf

]

=
1

1− a2

[
1 +

ae−i2πf

1− ae−i2πf
+

ae+i2πf

1− ae+i2πf

]

=
1

1− 2a cos(2πf) + a2

5. La densité spectrale en sortie est donnée par la relation : Γy(f) = |H(f)|2Γx(f) où Γx(f) est la densité spectrale en
entrée et H(f) la réponse en fréquence du filtre.

H(f) =
∑

k∈Z

hke
−i2πkf =

∞∑

k=0

ake−i2πkf =
1

1− ae−i2πf

Γx(f) =
∑

k∈Z

γx(k)e
−i2πkf = 1

On retrouve alors bien l’expression précédente.

Exercice 43: filtrage d’un signal aléatoire (temps discret) Soit un signal aléatoire à temps
discret (xn)n∈Z réel, centré et tel que pour tout k ∈ Z, E{xnxn−k} = δk (où par définition δk = 0
si k 6= 0 et δ0 = 1).

1. Le signal (xn)n∈Z est-il stationnaire au sens large ? Si oui, quelle est sa fonction d’autocorrélation ?

2. On filtre le signal (xn)n∈Z par un filtre dont la réponse impulsionnelle est donnée par :

hn =

{
an si n ≥ 0,

0 si n < 0,

où a est réel, |a| < 1. Donner l’expression de la sortie (yn)n∈Z du filtre.

3. Calculer H [z], la fonction de transfert en z du filtre précédent et préciser son domaine de conver-
gence.

4. Calculer la densité spectrale Γy(f) de (yn)n∈Z.

Réponses exercice: 43

1. (xn)n∈Z est stationnaire au sens large de fonction d’autocorrélation γx(k) = δk .

2. yn =
∑

k∈N
hkxn−k =

∑∞
k=0 a

kxn−k.

3. H[z] =
∑∞

n=0 a
nz−n = 1

1−az−1 sur le domaine défini par |z| > |a|.

4. Γy(f) =
∣∣∣ 1
1−ae−i2πf

∣∣∣
2
.

Exercice 44: filtrage d’un signal aléatoire (temps discret) Soit le filtre à temps discret
défini par la relation de récurrence suivante entre le signal d’entrée (xn)n∈Z et le signal de sortie
(yn)n∈Z :

∀n ∈ Z yn = ayn−1 + xn (11)

où a est réel, |a| < 1.

1. Calculer la transformée en z (notée H [z]) du filtre en question. Compte tenu de la causalité imposée
par l’équation (11), quel est le domaine de convergence de H [z] ? Que peut-on en déduire concernant
la stabilité du filtre ?

2. Calculer la réponse impulsionnelle (hn)n∈Z du filtre causal H [z].
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Le filtre est attaqué en entrée par un signal aléatoire à temps discret (xn)n∈Z réel, centré. De plus,
sa densité spectrale vaut : Γx(f) = 1.

Pour tout k ∈ Z, on note γx(k) = E{xnxn−k} la fonction d’autocorrélation de (xn)n∈Z et on rappelle
que la densité spectrale de (xn)n∈Z est définie par : Γx(f) =

∑
k∈Z

γx(k)e
−i2πkf .

3. Quelle est la réponse fréquentielle H(f) du filtre H [z] ? Calculer la densité spectrale Γy(f) du signal
(yn)n∈Z en sortie du filtre (il est inutile de passer par le calcul de l’autocorrélation).

4. Que vaut la fonction d’autocorrélation du signal (xn)n∈Z ? Calculer γy(k), k ∈ Z (on pourra utiliser
le fait que les fonctions d’autocorrélation en entrée et sortie du filtre sont liées par la convolution
γy(k) = γh(k) ⋆ γx(k) où γh(k) est l’autocorrélation en énergie de la réponse impulsionnelle du
filtre).

5. Calculer la réponse impulsionnelle du filtre anti-causal admettant H [z] comme transformée en z
sur un domaine de convergence à préciser.

Réponses exercice: 44

1. H[z] = 1
1−az−1 sur le domaine de convergence {z ∈ C | |z| > |a|}. Le filtre est donc stable (car |a| < 1).

2. Un développement de H[z] en série sur le domaine de convergence donne immédiatement :

hn =

{
an si n ≥ 0,

0 si n < 0,

3. La réponse fréquentielle est donnée par H(f) = H[ei2πf ] = 1
1−ae−i2πf . La densité spectrale en sortie est alors donnée

par :

Γy(f) = |H(f)|2Γx(f) =
1

1 + a2 − 2a cos(2πf)

4. La fonction d’autocorrélation de (xn)n∈Z correspond aux coefficients du développement en série de Fourier de Γx(f)
et on a donc immédiatement : γx(k) = δk (impulsion unité égale à 1 si k = 0 et 0 sinon). Il vient alors :γy(k) =
γh(k) ⋆ γx(k) = γh(k) et pour k ≥ 0 on peut faire le calcul :

γh(k) =
∑

n

hnhn−k =
∑

n≥k

anan−k = ak
∑

n≥0

a2n =
ak

1− a2

En utilisant la symétrie, on conclut finalement : γy(k) =
a|k|

1−a2 .

5. Le filtre anti-causal admettant H[z] comme transformée en z est celui correspondant au domaine de convergence
{z ∈ C | |z| < |a|} de H[z]. Or pour tout z dans ce domaine, 1

1−az−1 = −∑
n≤−1 a

nz−n et la réponse impulsionnelle

du filtre anti-causal de transformée en z H[z] est donc :

h̃n =

{
0 si n ≥ 0,

−an si n < 0,

Exercice 45: signal aléatoire sinusoidal bruité, filtrage On considère le signal à temps discret
xn = a cos(2πf0n) + bn où a > 0 et f0 ∈]0, 1/2[ sont des constantes, φ est une variable aléatoire
uniformément répartie sur l’intervalle [0, 2π] et bn est un bruit blanc (centré) de puissance E{b2n} =
σ2. Les deux processus a cos(2πf0n+ φ) et bn sont supposés indépendants.

1. Montrer que le signal xn est stationnaire au sens large.

2. Vérifier que pour f ∈ [−1/2, 1/2], la densité spectrale de puissance de xn s’écrit :

Γx(f) =
a2

4
(δ(f − f0) + δ(f + f0)) + σ2 sur l’intervalle [-1/2,1/2].

Pour cela, on rappellera l’expression de l’autocorrélation γx(k) en fonction de la densité spectrale
de puissance Γx(f). (On manipulera la masse de Dirac δ(.) selon les règles «usuelles» et sans aucune justification

demandée.)

3. Pourriez-vous donner, en justifiant, l’expression de Γx(f) sur l’intervalle [0, 1] ?
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4. Le signal xn est appliqué en entrée d’un filtre dont la réponse en fréquence vaut :

H(f) =

{
1 si f ∈ [−α, α] (avec 0 < f0 < α < 1/2),

0 sinon.

Calculer la puissance du signal yn en sortie du filtre.

Réponses exercice: 45

1. En utilisant l’indépendance des termes croisés et le fait que le bruit est centré, il vient :

E{xnxn−k} = E{a2 cos(2πf0n+ φ) cos(2πf0(n− k) + φ)}+ E{bnbn−k}

= E{a
2

2

(
cos(2πf0(2n− k) + 2φ) + cos(2πf0k)

)
}+ E{bnbn−k}

φ étant uniformément distribuée sur [0, 2π] et bn étant blanc, le signal est stationnaire de fonction d’autocorrélation :

γx(k) =
a2

2
cos(2πf0k) + σ2δk

2. γx(k) et Γx(f) sont liées par transformée de Fourier (temps discret) et on a :

γx(k) =

∫ 1/2

−1/2
Γx(f))e

+i2πkf df

La densité spectrale de puissance est la transformée de Fourier de l’expression précédente :

Γx(f) =
a2

4
(δ(f − f0) + δ(f + f0)) + σ2

3. Compte tenu de la 1-périodicité de Γx(f),

Γx(f) =
a2

4
(δ(f − f0) + δ(f − 1 + f0)) + σ2 sur l’intervalle [0, 1].

4. La densité spectrale de yn vaut Γy(f) = |H(f)|2Γx(f) et la puissance de yn s’en déduit :

Py =

∫ 1/2

−1/2
Γy(f) df =

∫ α

−α
Γx(f) df =

a2

2
+ 2ασ2

Exercice 46: effacement d’une série harmonique Dans tout l’exercice, n désigne un entier
n ∈ Z. Pour p ∈ {1, . . . ,M}, soient fp des raies (càd des fréquences fixées) dans ]− 1

2 ,
1
2 ] et up des

variables aléatoires centrées et décorrélées. On définit le signal aléatoire :

xn =

M∑

p=1

upe
i2πnfp (12)

1. Justifier que xn est un signal aléatoire stationnaire au sens large et, pour k ∈ Z, calculer son
auto-corrélation γx(k).

2. On admet que, pour xn, on peut écrire symboliquement une densité spectrale de puissance Γx(f)

sous la forme Γx(f) =
∑M

p=1 σ
2
up
δ(f − fp). Justifier rapidement cette écriture et préciser la valeur

des σ2
up

(seule une écriture symbolique correcte est demandée ici, sans autre justification).

Remarque : δ(f − fp.) représente une masse de Dirac en la fréquence f = fp et se manipulera selon les règles

«usuelles». En cas de souci de rigueur, on pourra remarquer que l’écriture proposée de Γx(f) correspond à la mesure

spectrale de puissance de xn.

3. On considère un filtre donné par sa fonction de transfert en z :

H [z] =
M∏

p=1

(1− ei2πfpz−1)
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(a) S’agit-il d’un filtre de réponse impulsionnelle finie ou infinie ?

(b) Préciser la réponse en fréquence H(f) du filtre étudié et montrer qu’elle s’annule en les fré-
quences fp, p ∈ {1, . . . ,M}.

4. On note yn le signal aléatoire issu du filtre H [z] lorsque le signal xn défini à l’équation (12) ci-dessus
est appliqué en entrée.

(a) Que vaut la densité spectrale de yn ? Que vaut la puissance de yn ?

(b) En déduire ce que vaut yn.

5. On écrit H [z] sous la forme H [z] = 1 −∑M
p=1 apz

−p où pour tout p, ap est un coefficient que l’on
peut exprimer en fonction des fréquences fp (non demandé).

(a) Donner la réponse impulsionnelle hn du filtre H [z] en fonction des coefficient ap, p ∈ {1, . . . ,M}.
(b) Déduire de la question 4 une relation de récurrence vérifiée par le signal xn.

Réponses exercice: 46

1. Puisque les up sont décorrélées et centrées, on peut faire les calculs ci-dessous, qui justifient la stationnarité au sens
large :

E{xn} = 0 γx(k) , E{xnx
∗
n−k} =

M∑

p=1

σ2
up

ei2πkfp

où l’on a définit σ2
up

, E{[up|2}.

2. On vérifie que l’écriture symbolique de transformée de Fourier inverse à temps discret de Γx(f) redonne l’auto-
corrélation ci-dessus.

3. (a) Réponse impulsionnelle finie.

(b) H(f) =
∏M

p=1(1 − ei2πfpe−i2πf ). Cette réponse en fréquence s’annule bien pour f = fp que que soit p ∈
{1, . . . ,M}.

4. (a) Γy(f) = 0 et la puissance est donc E{|yn|2} = 0.

(b) yn = 0.

5. (a)

hn =





1 si n = 0,

−ap si 1 ≤ n ≤ M,

0 sinon.

(b) Comme yn = 0, on a : xn =
∑M

p=1 apxn−p.

Exercice 47: prédiction linéaire Pour des variables aléatoires réelles de carré sommable, on
définit le produit scalaire par :

〈X,Y 〉 , E{XY }
où E{.} désigne l’espérance mathématique. On considère (xk)k∈Z un signal aléatoire réel, centré,
stationnaire au sens large, et dont la fonction d’autocorrélation (Rx(k))k∈Z est supposée connue.
Soient enfin n et m fixés, n ∈ Z et m ∈ N. Cet exercice a pour but, dans deux cas particuliers, de
déterminer une prédiction de xn, notée x̂n, qui minimise l’erreur quadratique :

E , E{(x̂n − xn)
2} (13)

1. Nous recherchons dans un premier temps x̂n comme la meilleure prédiction linéaire de xn à partir
de xn−m ; c’est-à-dire que l’on cherche x̂n sous la forme : x̂n = λxn−m où λ ∈ R.

(a) Exprimer l’erreur E de l’équation (13) sous la forme d’un polynôme du second degré en λ.
En déduire la valeur optimale de λ permettant de minimiser l’erreur quadratique ainsi que
l’expression de x̂n correspondante.

(b) Retrouver le résultat précédent en interprétant E comme une norme au carré et x̂n comme
une projection orthogonale.
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2. Nous cherchons maintenant x̂n comme la meilleure prédiction linéaire de xn à partir des xn−k, k =
1, . . . ,m, c’est à dire que x̂n s’écrit : x̂n =

∑m
k=1 akxn−k où les coefficients ak, k = 1, . . . ,m sont

réels.

(a) En vous inspirant de la question 1b, montrer que les coefficients ak, k = 1, . . . ,m satisfont :

∀l ∈ {1, . . . ,m}
m∑

k=1

akRx(k − l) = Rx(l).

(b) En déduire que les ak, k = 1, . . . ,m sont solutions d’un système linéaire qui s’écrit sous la
forme (on précisera les valeurs de c0, c1, . . . , cm−1, cm) :




c0 c1 . . . cm−1

c1 c0
. . . cm−2

...
. . .

. . .
...

cm−1 . . . c1 c0







a1
a2
...

am


 =




c1
c2
...
cm




Réponses exercice: 47

1. (a) E = λ2Rx(0)− 2λRx(m) + Rx(0) et donc : x̂n = Rx(m)
Rx(0)

xn−m.

(b) Ecrire l’orthogonalité entre l’erreur et l’espace sur lequel on projette : 〈x̂n − xn, xn−m〉 = 0.

2. (a) De même qu’en 1b, écrire que l’on a ∀l ∈ {1, . . . ,m}, 〈x̂n − xn, xn−l〉 = 0. Le résultat est immédiat en
remplaçant x̂n =

∑m
k=1 akxn−k et en utilisant la linéarité du produit scalaire.

(b) Simple traduction des équations de la question précédente : ∀l, cl = Rx(l).

Exercice 48: filtre adapté (temps discret)
Les différentes quantités et signaux de cet exercice sont supposés à valeurs dans R.

On considère un signal déterministe à temps discret supposé donné (sn)n∈Z. Ce signal modélise
une impulsion qui, selon le cas est ou n’est pas transmise dans un canal. Au cours de la transmission
s’ajoute une perturbation de type bruit additif (cette description correspond par exemple au cas
d’un radar/sonar où le signal émis est renvoyé ou non selon la présence ou l’absence de cible). Ainsi,
si l’on note (bn)n∈Z un bruit blanc centré, on observe en réception :

∀n
{
xn = sn + bn si le signal est transmis,

xn = bn si le signal n’est pas transmis.

Le signal (xn)n∈Z en réception est filtré par un filtre de réponse impulsionnelle (hn)n∈Z donnant
ainsi le signal (yn)n∈Z.

1. D’après les hypothèses :

(a) Préciser si le signal (xn)n∈Z est aléatoire ou déterministe. Même question pour (hn)n∈Z.

(b) Pour p ∈ Z, préciser comment s’écrit yp en fonction des signaux (xn)n∈Z et (hn)n∈Z.

2. Pour p ∈ Z, en déduire E{yp} selon si le signal (sn)n∈Z est transmis ou ne l’est pas.

On s’intéresse au problème de détection qui consiste à décider la présence ou non du signal (sn)n∈Z

à un instant p ∈ Z donné. Pour celà, la valeur de yp est comparée à un seuil.

3. Dans cette question, on souhaite déterminer le filtre (hn)n∈Z qui permettra de faciliter au mieux le
problème de détection. On suppose à partir de maintenant que (sn)n∈Z est transmis.

(a) Justifier qu’on souhaite alors maximiser la quantité suivante, appelée rapport signal sur bruit :

ρ =
E{yp}2
Var{yp}



January 30, 2026 45

(b) On note σ2
b la puissance du bruit (bn)n∈Z. Calculer Var{yp}.

(c) Rappeler l’expression de l’énergie Es du signal (sn)n∈Z et déduire de ce qui précède que :

ρ ≤ Es

σ2
b

(d) Montrer que la borne ci-dessus est atteinte lorsque le filtre (hn)n∈Z est tel que hn = λsp−n où
λ 6= 0 est une constante que l’on peut choisir librement. Le filtre ainsi déterminé est appelé
filtre adapté.

Réponses exercice: 48

1. (a) (xn)n∈Z est aléatoire ; (hn)n∈Z est déterministe.

(b) yp =
∑

k∈Z
hkxp−k =

∑
k∈Z

hp−kxk donc yp =
∑

k∈Z
hkbp−k en absence de signal et yp =

∑
k∈Z

hksp−k +∑
k∈Z

hkbp−k en présence de signal.

2. Comme le bruit est centré, E{yp} = 0 en l’absence de signal et E{yp} =
∑

k∈Z
hksp−k en présence de signal.

3. (a) Pour détecter la présence du signal (sn)n∈Z, on compare la valeur de yp à un seuil. Or yp est une variable
aléatoire, de moyenne E{yp} (nulle si absence du signal et non nulle si présence de (sn)n∈Z) et variance
Var{yp} : pour faciliter la détection, il est naturel de souhaiter minimiser la variance de cette variable aléatoire
et maximiser sa valeur moyenne en présence du signal à détecter.

(b) Var{yp} = σ2
b

∑
k∈Z

|hk|2
(c) Il suffit d’appliquer l’inégalité de Cauchy-Schwarz et se rappeler que Es =

∑
n∈Z

|sn|2.
(d) Il s’agit du cas d’égalité de l’inégalité de Cauchy-Schwarz.
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Questions de cours
(d’après examens des années précédentes)
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1. Qu’appelle-t-on un filtre en théorie du signal ? Quelle est la relation entrée-sortie qui correspond ?

2. A quelle(s) condition(s) dit-on qu’un signal aléatoire est stationnaire/ergodique ?

3. Qu’appelle-t-on réponse impulsionnelle d’un filtre ?

4. Rappeler le critère dit de Shannon du théorème d’échantillonnage (appelé aussi critère de Shannon-
Nyquist selon les usages).

5. Rappeler la définition de la puissance et de l’énergie d’un signal déterministe.

6. Soit y(t) un signal provenant du filtrage d’un signal x(t) par un filtre de réponse en fréquence H(f).
Quel lien existe-t-il entre les densités spectrales de puissance de x(t) et y(t) ?

7. Résumer en quelques mots l’effet d’un échantillonnage sur le spectre d’un signal. Quelle est la
condition d’échantillonnage d’un signal passe-bas qui en résulte, si l’on souhaite ne pas perdre
d’information au cours de l’échantillonnage ?

8. Comment se définit un filtre en traitement du signal ? Si (hk)k∈Z est la réponse impulsionnelle d’un
filtre à temps discret, quelle est la relation entrée-sortie correspondante ?

9. Qu’est-ce que le procédé de modulation ? Qu’appelle-t-on porteuse dans la modulation ?

10. Rappeler la définition de l’autocorrélation d’un signal déterministe respectivement d’énergie finie /
de puissance finie.

11. Rappeler la définition de la propriété de causalité d’un filtre. Donner une condition nécessaire et
suffisante sur la réponse impulsionnelle d’un filtre pour qu’il soit causal.

12. A quelle condition est-il théoriquement possible de reconstruire sans erreur un signal à temps continu
à partir de ses échantillons prélevés à une fréquence fe ?

13. Quelle est la définition de la transformée en z d’un signal à temps discret et quel lien existe-t-il
entre la transformée en z et la transformée de Fourier à temps discret ?

14. Qu’appelle-t-on signal à bande étroite ? Donner un exemple classique.

15. Définir les notions de signal aléatoire et signal déterministe.

16. Comment se définit la densité spectrale de puissance ? Quel est le lien entre puissance et densité
spectrale de puissance ?

17. Comment s’écrit la fonction de transfert en z d’un filtre numérique lorsque celui-ci est de réponse
impulsionnelle finie (filtre transverse) ? Quelle est la relation correspondante qui permet de calculer
la sortie ?

18. Quelle est la définition du signal analytique associé à un signal réel x(t) ?

19. Définir ce qu’on appelle un signal quantifié et un signal échantillonné.

20. Comment s’écrit la fonction de transfert en z d’un filtre purement récursif (ou filtre AR : auto-
régressif) ? Quelle est la relation correspondante qui permet de calculer la sortie ?

21. Comment se définit la transformée de Fourier à temps discret (TFTD) d’un signal (temps discret)
(xn)n∈Z.

22. Quel est le lien entre la TFTD définie à la question précédente et la transformée de Fourier discrète
(TFD) ? Qu’est-ce que la «FFT» ?

23. Quelle est la définition de l’intercorrélation γxy(τ) de deux signaux déterministes, à temps continu
et de puissance finie (non nulle) ?
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24. Comment se définit la densité spectrale de puissance pour un signal aléatoire ? Quel est le lien entre
puissance et densité spectrale de puissance ?

25. Qu’est-ce qu’un bruit blanc ? On précisera ce que valent la densité spectrale et l’autocorrélation
d’un bruit blanc.

26. Qu’est-ce que le procédé de modulation ? Préciser si les signaux appelés porteuse et modulante sont
haute ou basse fréquence.

27. Quel nom donne-t-on à un signal aléatoire centré dont la densité spectrale de puissance est constante ?
Comment s’exprime l’autocorrélation d’un tel signal ?

28. Quelle est la définition de l’intercorrélation γxy(k) de deux signaux déterministes, à temps discret
et d’énergie finie ?

29. Soit y(t) un signal provenant du filtrage d’un signal x(t) par un filtre de réponse en fréquence H(f).
Quel lien existe-t-il entre les densités spectrales de puissance Γx(f) et Γy(f) des deux signaux en
question ?

30. Soit h(t) un signal déterministe. Comment s’appelle l’opération qui à un signal x(t) associe le signal
y(t) = h(t) ⋆ x(t) (ou ⋆ désigne le produit de convolution) ? Rappeler l’écriture de y(t) sous forme
d’intégrale.

31. Comment se définit l’enveloppe complexe d’un signal à bande étroite x(t) ? Un petit schéma dans
le domaine des fréquences pourra être utile.

32. Que peut-on dire de la transformée de Fourier de signaux échantillonnés ? de la transformée de
Fourier de signaux périodiques ?

33. Le signal analytique associé à un signal à valeurs réelles est-il à valeurs réelles ou complexes ?
Justifier.

34. Donner la forme générale de la fonction de transfert en z d’un filtre purement récursif (ou filtre
AR : auto-régressif). Quelle est l’équation temporelle donnant la sortie en fonction de l’entrée ?

35. Que peut-on dire du domaine de convergence de la fonction de transfert en z d’un filtre causal ?
Faire un schéma.

36. Comment un signal aléatoire se définit-il mathématiquement ? Qu’appelle-t-on trajectoire d’un si-
gnal aléatoire ?

37. Quelle est le nom donné à un signal aléatoire stationnaire (sens large) dont la densité spectrale de
puissance est constante ?

38. Qu’appelle-t-on algorithme de transformée de Fourier rapide (FFT) ? Préciser le produit matriciel
effectué et la (ou les) condition(s) pour que cet algorithme puisse être utilisé.

39. Si X [z] est la transformée en z du signal à temps discret xn, de quel signal z−1X [z] est-il la
transformée en z ? Quel nom donne-t-on en général à cette propriété ?

40. Rappeler la propriété appelée «théorème du retard» vérifiée par la transformée en z.

41. Citer deux exemples connus (donnés en cours) de signaux aléatoires dont les accroissements sont
indépendants.

42. A quelle condition dit-on d’un signal stationnaire qu’il est ergodique ?

43. Pour un signal aléatoire, rappeler à quelle(s) condition(s) il est stationnaire au sens large.
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44. A quelles fréquences fe peut-on échantillonner un signal de bande limitée [−B,B] sans perdre
d’information ? A quel(s) nom(s) est généralement associé ce résultat ?

45. Donner le signal analytique, la transformée de Hilbert et l’enveloppe complexe du signal x(t) =
cos(2πf0t) (où f0 est une fréquence fixe donnée).

46. Pour un signal aléatoire à temps discret, stationnaire au sens large, donner, en précisant la formule
utilisée pour la transformée de Fourier, la définition de :

(i) sa fonction d’auto-corrélation,

(ii) sa densité spectrale de puissance.

47. Soit x(t) un signal déterministe à temps continu de transformée de Fourier X(f). Donner deux
expressions de son énergie, en fonction de x(t) et de X(f). Quel nom donne-t-on au lien entre ces
deux expressions de l’énergie ?

48. Etant donné un signal temps continu x(t), le signal échantillonné qui lui est associé est défini
en annexe par xe(t) , x(t)XTe

(t). Sachant que Te est la période d’échantillonnage, préciser ce
que signifie cette notation (en particulier XTe

(t)) et donner l’expression de x(t) en fonction des
échantillons (x(kTe))k∈Z.

49. Donner la forme générale de la fonction de transfert en z d’un filtre MA (moving average, appelé
aussi moyenne mobile).

50. Notons h(t) la sortie d’un filtre lorsqu’il est attaqué en entrée par un Dirac δ(t). Quel est le lien
entre h(t) et la réponse en fréquence ? Quel nom donne-t-on à h(t) ?

51. Soit x(t) est un signal haute-fréquence (autour d’une fréquence f0), à valeurs réelles dont la trans-
formée de Fourier est notée X(f). Soit un filtre haute-fréquence de réponse en fréquence H(f) et

soit H̃(f) le filtre passe-bas équivalent. Donner le lien entre :

— l’entrée et la sortie du filtre, notée y(t) (de transformée de Fourier Y (f)).

— les enveloppes complexes en entrée et sortie du filtre (notées ξx(t), ξy(t) respectivement et de
transformées de Fourier Ξx(f), Ξy(f)).

52. Pour un signal aléatoire, comment définit-on la densité spectrale de puissance ? Peut-on définir la
transformée de Fourier d’une trajectoire et, si oui, préciser alors le lien avec la densité spectrale de
puissance.

53. Pour un filtre dont la transformée en z est une fraction rationnelle : à quelle condition sur les pôles
le filtre est-il stable et causal ?

54. Pour deux signaux d’énergie finie x(t) et y(t), rappeler la définition de leur intercorrélation γe
xy(τ).

Exprimer ensuite γe
xy(τ) comme un produit de convolution de deux signaux que l’on précisera

clairement.

55. Soit (xn)n∈Z un signal à temps discret d’énergie finie et X(f) sa transformée de Fourier à temps
discret. Donner deux expressions de l’énergie de ce signal, l’une en fonction de xn, l’autre en fonction
de X(f) (préciser les bornes des intégrales et des sommes).

56. y(t) est un signal bande étroite (bande centrée autour d’une fréquence f0) issu du filtrage d’un signal
x(t) également bande étroite par un filtre de réponse en fréquence H(f). Définir le filtre passe-bas
équivalent et donner la relation entre les transformées de Fourier Ξx(f) et Ξy(f) des enveloppes
complexes de x(t) et y(t) respectivement.
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57. Soit (hn)n∈Z la réponse impulsionnelle d’un filtre à temps discret. Donner une condition nécessaire
sur cette dernière pour que le filtre soit :

(a) stable,

(b) causal.

58. Soit (xn)n∈Z un bruit blanc centré à temps discret. Rappeler la définition de l’auto-corrélation γx(k)
de ce signal et préciser ce qu’elle vaut. Que peut-on dire de la densité spectrale de puissance ?

1. On définit le signal x(t) par :

x(t) =
∑

n∈Z

Πτ (t− nT )

où : T > τ sont deux réels positifs et Πτ désigne une porte de largeur τ (Πτ (t) = 1 si |t| ≤ τ/2 et 0
sinon). Rappeler le calcul de la transformée de Fourier de ce signal que vous avez étudié en TP.

2. Supposons qu’un vecteur d’échantillons soit stocké sous la variable x dans l’environnement Matlab

. On souhaite obtenir une image du spectre en amplitude du signal x : sur l’axe horizontal doit
apparaître une graduation correcte de la fréquence réduite (ou normalisée) sur l’intervalle [0, 1].
Compléter les lignes de code suivantes et préciser les valeurs que contiendra la variable freq :

N = length(x);

X = abs(fft(x));

freq = %%% completer cette ligne %%%

plot(freq,X);

3. Supposons qu’un vecteur d’échantillons soit stocké sous la variable x dans l’environnement Matlab

. Ce vecteur provient de l’échantillonnage à la fréquence Fe = 44kHz d’un signal sonore. On sou-
haite obtenir une image du spectre en amplitude du signal x : sur l’axe horizontal doit apparaître
une graduation correcte de la fréquence réelle sur l’intervalle [0, Fe]. Compléter les lignes de code
suivantes :

Fe = 44000;

N = length(x);

X = abs(fft(x));

freq = XXX; %%% compléter cette ligne en remplacant convenablement XXX %%%

plot(freq,X);

4. Nous rappelons que l’algorithme le plus classique pour calculer une transformée de Fourier rapide
(algorithme «FFT» de Cooley-Tuckey) nécessite que le nombre de points soit une puissance de 2. Si
l’on tape fft([1 0 0]), le logiciel Matlab renverra-t-il une erreur ? A défaut, préciser exactement
ce qui sera renvoyé (avec valeur numérique).

5. Sous Matlab , on suppose que x est un vecteur contenant les échantillons d’un signal. Quelle est la
fonction de transfert en z du filtre appliqué au signal x lorsque l’on tape : filter([1 -1],1,x) ?

6. Nous rappelons que l’algorithme le plus classique pour calculer une transformée de Fourier rapide
(algorithme «FFT» de Cooley-Tuckey) nécessite que le nombre de points soit une puissance de 2. Si
l’on tape fft([1 1 1]), le logiciel Matlab renverra-t-il une erreur ? A défaut, préciser exactement
ce qui sera renvoyé (avec valeur numérique).

7. On considère le filtre (stable, causal) de fonction de transfert en z donnée par H [z] = 1
1−0.5z−1 . Sous

Matlab , on suppose stocké dans une variable x les échantillons d’un signal. Donner la commande
Matlab qui permettra de filtrer les échantillons dans x par H [z].
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Questions de QCM
(d’après examens des années précédentes)
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1. On considère le signal à temps discret (xn)n∈Z et le vecteur x = (x0, . . . , xN−1) constitué de N
échantillons. (xn)n∈Z n’est pas nul en dehors de ces N échantillons. La transformée de Fourier
discrète du vecteur x :

F est définie par :

X(f) =
∑

n∈Z

xne
−i2πfn

V évalue les valeurs de la fonction X(f) =

N−1∑

n=0

xne
−i2πfn pour f prenant respectivement les

valeurs 0, 1
N , 2

N , . . . , N−1
N .

F ne peut se calculer que si N est une puissance de 2.

F évalue la transformée de Fourier à temps discret de (xn)n∈Z pour des fréquences discrètes. Les
fréquences étant discrètes, (xn)n∈Z est un signal périodique.

2. La fonction d’autocorrélation γx(τ), τ ∈ R (en énergie ou puissance) d’un signal à temps continu
x(t), t ∈ R :

F est toujours une fonction périodique,

V peut être une fonction périodique selon le signal x(t),

F vérifie pour tout τ : γx(τ) ≥ 0,

F est définie comme le module au carré de la transformée de Fourier de x(t).

3. On peut observer un phénomène d’élargissement des raies spectrales :

F uniquement lorsque le principe d’incertitude de Heisenberg n’est pas contredit par le signal.

F lorsque la fréquence d’échantillonnage est mal choisie.

V de façon générale lors de la troncature temporelle d’un signal comportant des raies dans son
spectre.

F uniquement lorsque le signal étudié est une sinusoïde convoluée avec une porte.

4. Soit x(t) un signal et X(f) sa transformée de Fourier (ce que l’on note par : x(t)
TF−→ X(f)). Alors :

V x(t)ei2πf0t
TF−→ X(f − f0)

F x(t+ t0)
TF−→ X(ft0)

F x(at)
TF−→ aX(af)

V si x(t) est réel, alors X(f) = X(−f)∗.
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5. Un signal sinusoïdal pur de fréquence 418Hz est échantillonné. La durée entre deux échantillons est
de 20ms.

F La condition d’échantillonnage de Shannon est respectée.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
une raie est repliée à 20Hz.

V La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
une raie est repliée à 18Hz.

F La transformée de Fourier à temps discret du signal échantillonné n’est pas définie car la
condition d’échantillonnage n’est pas respectée.

6. Le domaine de convergence de la transformée en z d’un signal (xn)n∈Z à temps discret :

F est C tout entier, sauf pour quelques cas particuliers,

F n’est pas fondamental car les filtres que l’on considère sont souvent rationnels et n’ont donc
qu’un nombre fini de pôles,

V est important, car deux fonctions de la variable complexe z ayant la même expression mais dé-
finies sur des domaines de convergence distincts peuvent être les transformées de deux signaux
à temps discret distincts,

F doit contenir le cercle unité pour que le signal (xn)n∈Z existe.

7. Un filtre numérique rationnel défini par sa fonction de transfert en z H [z] ou par sa réponse impul-
sionnelle (hn)∈Z est stable si et seulement si :

F le domaine de convergence de H [z] est du type {z ∈ C | |z| > R}, où R ∈ R∗
+,

F les pôles de H [z] sont à partie réelle négative,

F la réponse impulsionnelle est bornée (càd il existe M ∈ R
∗
+ tel que pour tout n, |hn| < M),

V
∑+∞

k=−∞ |hk| est fini.

8. Soit x(t) un signal réel et X(f) sa transformée de Fourier. Rappelons que le signal analytique xa(t)
associé au signal réel x(t) peut être défini par sa transformée de Fourier :

Xa(f) =

{
2X(f) si f ≥ 0,

0 si f < 0.

F La transformation de x(t) en signal analytique xa(t) est indispensable avant toute analyse à
l’analyseur de spectre car seules les fréquences positives existent.

F Le signal analytique xa(t) est un signal réel.

V Le signal analytique xa(t) est un signal complexe.

F Le signal analytique xa(t) peut être réel ou complexe, celà dépend du signal x(t).
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9. L’algorithme de transformée de Fourier rapide (FFT) :

F est un algorithme rapide qui permet de calculer la transformée de Fourier discrète ; il s’applique
dès que le nombre d’échantillons est pair.

V est un algorithme rapide qui permet de calculer la transformée de Fourier discrète ; il s’applique
lorsque le nombre d’échantillons est une puissance de deux.

F est un algorithme rapide pour le calcul du produit matriciel de l’équation (14) ci-dessous où
x1, . . . , xN sont N échantillons ; l’algorithme s’applique dès que N est pair.

V est un algorithme rapide pour le calcul du produit matriciel de l’équation (14) ci-dessous où
x1, . . . , xN sont N échantillons ; l’algorithme s’applique lorsque N est une puissance de deux.




1 1 1 1 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) · · · w(N−1)2







x1

x2

x3

...
xN




avec : w = ei2π/N (14)

10. Un signal sinusoïdal pur de fréquence 4135Hz est échantillonné. La durée entre deux échantillons
consécutifs est de 0.5ms.

V La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée à 1865Hz.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée à 1135Hz.

F La condition d’échantillonnage de Shannon n’est pas respectée. Il y a repliement de spectre et
il existe une raie repliée à 865Hz.

F La condition d’échantillonnage de Shannon est respectée.

11. Le système L : x(t) 7→ y(t) =
∫ t

−α+t
x(θ) dθ où α > 0 :

F est un filtre dont la réponse impulsionnelle ne s’annule jamais.

F est non linéaire.

F est non invariant dans le temps.

V est un filtre causal.

12. Soient x(t) et y(t) deux signaux à temps continu. On note z(t) = x(t) ⋆ y(t) leur produit de
convolution.

V On a z(t) =
∫ +∞
−∞ x(θ)y(t − θ) dθ et aussi z(t) =

∫ +∞
−∞ y(θ)x(t − θ) dθ.

F On a z(t) =
∫ +∞
−∞ x(θ)y(t − θ) dθ mais, sauf cas particulier, z(t) 6=

∫ +∞
−∞ y(θ)x(t− θ) dθ.

F On a z(t) = x(t)y(t), ce qui est conforme avec le fait que le produit de convolution est
commutatif.

F On a z(t) =
∫ +∞
−∞ x(θ)y(θ − t) dθ et aussi z(t) =

∫ +∞
−∞ y(θ)x(θ − t) dθ.
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13. Soit γx(t) la fonction d’autocorrélation en puissance d’un signal x(t) de puissance finie.

F γx(t) ≥ 0 pour tout t.

F La puissance de de x(t) vaut
∫ +∞
−∞ |γx(t)|2 dt.

F La puissance de de x(t) vaut
∫ +∞
−∞ γx(t) dt.

V γx(0) ≥ |γx(t)| pour tout t.

14. Un filtre à temps discret défini par sa réponse impulsionnelle (hn)n∈Z ou par sa transformée en z
H [z] est stable si et seulement si :

F le domaine de convergence de H [z] est un disque de rayon R ∈ R∗
+.

F le domaine de convergence de H [z] est du type {z ∈ C | |z| > R}, où R ∈ R
∗
+.

V l’ensemble {z ∈ C | |z| = 1} est inclus dans le domaine de convergence de H [z].

F limn→+∞ hn = 0.

15. Si x =
[
1 −2 3 −4 5 −6 5 −2

]
et si on note X =

[
X0 X1 . . . X7

]
la transformée de

Fourier discrète de la suite d’échantillons contenus dans le vecteur x, que vaut X0 ?

F +
√
2− i2π

F −
√
2 + i2π

V 0

F 8

16. Dans une modulation :

F Le signal qui contient l’information en bande de base est appelé porteuse.

V Le signal qui contient l’information en bande de base est appelé signal modulant.

F Le signal modulé est une sinusoïde pure.

F Le signal modulé est toujours obtenu à partir de la transformée de Hilbert du signal modulant.

17. La transformée de Fourier à temps discret

V est périodique de période 1.

F n’est définie que pour un ensemble fini de fréquences.

F n’a de sens que pour un signal de durée finie.

F n’a de sens que pour un signal de période 1.

18. Un filtre à temps continu est stable au sens entrée bornée-sortie bornée si et seulement si :

F la réponse à un Dirac en entrée est de durée finie.

V sa réponse impulsionnelle h(t) satisfait :
∫ +∞
−∞ |h(t)| dt < +∞.

F sa réponse impulsionnelle h(t) satisfait :
∫ +∞
−∞ |h(t)|2 dt < +∞.

F sa réponse impulsionnelle h(t) satisfait : limt→+∞ h(t) = 0.
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19. Soit x(t) un signal déterministe d’énergie finie, X(f) sa transformée de Fourier et Γx(f) sa densité
spectrale d’énergie.

V On a : ∀f ∈ R Γx(f) = |X(f)|2.

F On a : ∀f ∈ R Γx(f) = |X(f)|.

V On a l’égalité :

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
Γx(f) df .

F Γx(f) est toujours maximal en 0.

20. Le domaine de convergence de la transformée en z d’un signal xn, n ∈ Z à temps discret :

F donne une indication sur l’inversibilité de la transformée en z : le cercle unité doit en effet
appartenir au domaine de convergence.

F est vide sauf pour des signaux de durée finie.

F n’a aucun intérêt puisque seule l’expression de la transformée en z nous intéresse.

V est important car une même fonction de la variable complexe z considérée sur des domaines de
convergence distincts peut être la transformée en z de deux signaux à temps discret distincts.

21. La formule d’interpolation d’un signal à bande limitée :

F est une approximation qui permet d’approcher les valeurs du signal entre les échantillons.

V est une égalité ; la reconstruction exacte du signal entre deux échantillons est possible en
théorie.

F ne fait intervenir que les échantillons passés du signal car un filtre de restitution doit être
causal.

F n’est valable que pour des signaux périodiques.

22. Un filtre à réponse impulsionnelle finie est aussi appelé :

V filtre transverse.

F filtre récursif.

F filtre à causalité finie.

F filtre à pôles positifs.
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23. On considère l’opération qui à un signal à temps continu x(t) associe le signal y(t) défini par :

y(t) =

∫ t+α

t

x(θ) dθ avec α > 0.

F C’est une opération de filtrage par un filtre non causal dont la réponse impulsionnelle est
donnée par :

h(θ) =

{
x(θ) si θ ∈ [t, t+ α]

0 sinon.

F C’est une opération de filtrage par un filtre causal dont la réponse impulsionnelle est donnée
par :

h(θ) =

{
x(θ) si θ ∈ [t, t+ α]

0 sinon.

V C’est une opération de filtrage par un filtre non causal dont la réponse impulsionnelle est
donnée par :

h(θ) =

{
1 si θ ∈ [−α, 0]

0 sinon.

F C’est une opération de filtrage par un filtre causal dont la réponse impulsionnelle est donnée
par :

h(θ) =

{
1 si θ ∈ [−α, 0]

0 sinon.

24. Soit T ∈ R+ et pT (t) le signal porte défini par pT (t) = 1 si t ∈ [−T/2, T/2] et pT (t) = 0 si
t /∈ [−T/2, T/2]. La transformée de Fourier PT (f) de pT (t) :

F n’est pas dérivable car le signal pT (t) n’est pas continu.

V vérifie l’égalité :

∫ +∞

−∞
|PT (f)|2 df = T

F est à valeurs complexes (et non pas réelles), comme c’est le cas pour toutes les transformées
de Fourier.

F vaut : PT (f) = T

(
sin(πfT )

πfT

)2

si f 6= 0 et PT (0) = 1.
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25. Soit x(t) un signal à bande limitée, dont le support de la transformée de Fourier est inclus dans
[−B,B] ; soit h(t) la réponse impulsionnelle d’un filtre quelconque. Soit y(t) la sortie de ce filtre
excité par x(t).

V y(t) est un signal à bande limitée.

F si T est une période d’échantillonnage telle que 1/T > 2B, alors le signal à temps discret
(y(nT )) coïncide avec la version filtrée de (x(nT )), la réponse impulsionnelle du filtre numé-
rique dont il est question étant (h(nT )).

F puisque y(t) =

∫

R

h(τ)x(t − τ)dτ , on peut toujours écrire, quel que soit T > 0 :

y(nT ) =
∑

k∈Z

h(kT )x(nT − kT )

F y(t) est un signal causal car obtenu par une opération de filtrage.

26. Soient les signaux à valeurs complexes x1(t) = ei2πf1t et x2(t) = ei2πf2t où les fréquences f1 et
f2 valent f1 = −418Hz et f2 = 582Hz. x1(t) et x2(t) sont tous deux échantillonnés aux instants
nTe, n ∈ Z, avec une durée Te = 1ms entre deux échantillons.

F La condition d’échantillonnage de Shannon-Nyquist n’est pas vérifiée pour x1(t) et est vérifiée
pour x2(t). De plus, pour tout n ∈ Z, on a : x1(nTe) = x2(nTe).

V La condition d’échantillonnage de Shannon-Nyquist est vérifiée pour x1(t) et n’est pas vérifiée
pour x2(t). De plus, pour tout n ∈ Z, on a : x1(nTe) = x2(nTe).

F La condition d’échantillonnage de Shannon-Nyquist n’est vérifiée ni pour x1(t), ni pour x2(t).

F L’affirmation «x1(nTe) = x2(nTe) pour tout n ∈ Z» est inexacte car la condition d’échan-
tillonnage de Shannon-Nyquist est vérifiée pour x1(t) et x2(t).

27. Un filtre numérique rationnel défini par sa fonction de transfert en z H [z] ou par sa réponse impul-
sionnelle (hn)n∈Z est stable si et seulement si :

F le domaine de convergence de H [z] est du type {z ∈ C | |z| > R}, où R ∈ R∗
+.

F les pôles de H [z] sont à partie réelle négative.

F la réponse impulsionnelle est bornée (càd il existe M ∈ R∗
+ tel que pour tout n, |hn| < M).

V l’ensemble {z ∈ C/|z| = 1} est inclus dans le domaine de convergence de H [z].

28. La puissance moyenne d’un signal x(t), t ∈ R :

V est définie par la limite suivante : lim
T→+∞

1

2T

∫ T

−T

|x(t)|2 dt.

F est infinie si l’énergie de x(t) est non nulle.

V est nulle lorsque l’énergie de x(t) est finie.

F peut être négative dans le cas d’un signal complexe.
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29. Soit x(t) un signal déterministe d’énergie finie, X(f) sa transformée de Fourier et Γx(f) sa densité
spectrale d’énergie.

V L’énergie de x(t) vaut

∫ ∞

−∞
|X(f)|2 df .

F On a : ∀f ∈ R Γx(f) = |X(f)|.

F Γx(f) admet toujours une symétrie hermitienne, càd : ∀f ∈ R Γ(f) = Γ(−f)∗.

F Γx(f) est toujours maximale en 0.

30. Soit x(t) un signal à temps continu et valeurs réelles, zx(t) son signal analytique associé, x̂(t) sa
transformée de Hilbert et ξx(t) son enveloppe complexe.

F zx(t) est à valeurs réelles car son spectre ne contient que des fréquences positives, les seules
qui aient un sens physique.

F ξx(t) est à valeurs complexes tandis que zx(t) est à valeurs réelles.

V Le signal x(t) est la partie réelle de zx(t) et x̂(t) est la partie imaginaire de zx(t).

F x̂(t) ne peut pas être la partie imaginaire de zx(t) car x̂(t) est un signal à valeurs complexes.
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Figure 6 – Pôles et zéros dans le plan complexe du filtre des questions 31 et 32

31. On considère le filtre causal dont la transformée en z est donnée par :

H [z] =
0, 85z−2 + 1, 2z−1 + 1

0, 68z−2 − 1, 6z−1 + 1

Ses zéros et pôles sont représentés sur la figure 6 page 59 :

V le filtre H [z] est de type passe-bas.

F le filtre H [z] est de type passe-bande.

F le filtre H [z] est de type passe-haut.

F il est impossible d’avoir la moindre idée du comportement de ce filtre à partir des éléments
donnés.
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32. On considère le même filtre qu’à la question 31.

V indépendamment des zéros, le filtre H [z] est stable car ses pôles sont de module inférieur à 1.

F indépendamment des pôles, le filtre H [z] est stable car ses zéros sont de module inférieur à 1.

F le filtre H [z] est stable car ses zéros sont à partie réelle négative.

F le filtre H [z] est instable car ses pôles sont à partie réelle positive.

33. La transformée de Hilbert du signal x(t) = cos(2πf0t) (où f0 est une constante positive) :

F vaut x̂(t) = 1
2

(
δ(f − f0) + δ(f + f0)

)
. En effet, on peut écrire x(t) = 1

2 (e
i2πf0t + e−i2πf0t) et

on sait que la transformée de Hilbert de l’exponentielle est un Dirac, noté ici δ.

F vaut x̂(t) = 1
2i

(
δ(f − f0)− δ(f + f0)

)
. En effet, on peut écrire x(t) = 1

2i (e
i2πf0t − e−i2πf0t) et

on sait que la transformée de Hilbert de l’exponentielle est un Dirac, noté δ.

V vaut x̂(t) = sin(2πf0t). Le signal analytique associé à x(t) est alors bien ei2πf0t = x(t) + ix̂(t).

V vaut x̂(t) = 1
2 (e

i2πf0t−iπ/2+ e−i2πf0t+iπ/2). En effet, on peut écrire x(t) = 1
2 (e

i2πf0t+ e−i2πf0t)
et on sait que la transformée de Hilbert d’une exponentielle pure est obtenue par un déphasage
pur de −π/2 si pour une fréquence positive et +π/2 pour une fréquence négative.

34. Un filtre numérique défini par sa fonction de transfert en z H [z] ou par sa réponse impulsionnelle
(hn)n∈Z est causal si et seulement si :

F hn > 0 pout tout n > 0.

V hn = 0 pour tout n < 0.

V le domaine de convergence de H [z] est du type {z ∈ C | |z| > R}∪{∞} (càd le complémentaire
d’un disque centré en 0, point à l’infini compris).

F le domaine de convergence de H [z] est du type {z ∈ C | R1 < |z| < R2} où R2 est un réel
positif (càd un anneau compris entre les cercles centrés en 0 et de rayon R1 et R2).

35. Soit Γx(f) la densité spectrale d’énergie d’un signal x(t).

F L’énergie du signal vaut Γx(0).

F L’énergie du signal vaut |Γx(0)|2.

V L’énergie du signal vaut
∫
R
Γx(f) df .

F L’énergie du signal vaut
∫
R
|Γx(f)|2 df .

36. Le signal x(t) = cos(2πf0t) avec f0 = 93Hz est échantillonné à la fréquence d’échantillonnage
Fe = 100Hz pour former le signal xn = x( n

Fe
), n ∈ Z.

F Il n’est pas possible de procéder ainsi car 2f0 > Fe et la condition de Shannon-Nyquist du
théorème d’échantillonnage n’est pas vérifiée.

F Il est possible de procéder ainsi car f0 ≤ Fe et la condition de Shannon-Nyquist du théorème
d’échantillonnage est vérifiée.

F Indépendamment de f0 et Fe, il est toujours possible de procéder ainsi. Ici, f0 ≤ Fe et la
condition de Shannon-Nyquist du théorème d’échantillonnage est donc vérifiée.

V Indépendamment de f0 et Fe, il est toujours possible de procéder ainsi. Ici, 2f0 > Fe et la
condition de Shannon-Nyquist du théorème d’échantillonnage n’est donc pas vérifiée.
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37. L’algorithme de transformée de Fourier rapide (FFT) :

F est un algorithme rapide basé sur les propriétés fondamentales de la transformée de Fourier
(linéarité, changement de variables, Parseval,. . .). Il permet le calcul de la transformée de
Fourier des signaux à temps continu.

F est un algorithme rapide basé sur le théorème des résidus et qui permet le calcul de la trans-
formée de Fourier des signaux à temps continu.

V est un algorithme rapide pour le calcul du produit matriciel de l’équation (15) ci-dessous
lorsque N est une puissance de deux.




1 1 1 1 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) · · · w(N−1)2







x1

x2

x3

...
xN




avec : w = ei2π/N (15)

F est un algorithme rapide basé sur les propriétés du filtrage à temps continu et qui est utilisé
dans les analyseurs de spectre analogiques.

38. La transformée de Fourier à temps discret :

F est obtenue par échantillonnage de la transformée de Fourier à temps continu.

V est définie pour des signaux à temps discret et est périodique de période 1.

F est définie pour des signaux à temps discret et est périodique de période 2π.

F est définie pour des signaux périodiques de période 1.

39. Soit γx(t) la fonction d’autocorrélation en puissance d’un signal x(t) de puissance finie.

F γx(t) ≥ 0 pour tout t.

F La puissance de x(t) vaut
∫ +∞
−∞ |γx(t)|2 dt.

V γx(t) peut être une fonction périodique.

V γx(0) ≥ |γx(t)| pour tout t.

40. Soit Γx(f) la densité spectrale de puissance d’un signal x(t) de puissance finie.

F Γx(0) est égal à la puissance du signal.

V Γx(f) est positif.

F ∀f ∈ R Γx(f) ≤ Γx(0).

F La puissance du signal vaut
∫
R
|Γx(f)|2 df .

41. Pour définir une densité spectrale de puissance d’un signal aléatoire, il faut :

F que toutes ses trajectoires soient d’énergie finie.

V qu’il soit stationnaire au sens large.

F que le module de sa transformée de Fourier soit borné.

F que sa transformée de Fourier soit ergodique.
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42. (yn)n∈Z est la sortie d’un filtre stable de réponse en fréquence H(f) excité en entrée par un signal
(xn)n∈Z aléatoire stationnaire au sens large.

F (yn)n∈Z est un signal aléatoire stationnaire au sens large et sa transformée de Fourier à temps
discret est H(f)X(f) (où X(f) est la transformée de Fourier du signal aléatoire (xn)n∈Z).

F (yn)n∈Z est un signal aléatoire déterministe car le filtre est stable et sa transformée de Fourier
à temps discret est H(f)X(f) (où X(f) est la transformée de Fourier du signal aléatoire
(xn)n∈Z).

V (yn)n∈Z est un signal aléatoire stationnaire au sens large et sa densité spectrale de puissance
est |H(f)|2Γx(f) (où Γx(f) est la densité spectrale de puissance de (xn)n∈Z).

F (yn)n∈Z est un signal aléatoire stationnaire au sens large. En tant que signal aléatoire, on ne
peut pas définir sa densité spectrale de puissance.

43. (xn)n∈Z est un bruit blanc de puissance σ2 envoyé en entrée d’un filtre stable de réponse impul-
sionnelle (hn)n∈Z et de réponse en fréquence H(f) .

F La densité spectrale de puissance en sortie est H(f)X(f) où X(f) est la transformée de Fourier
à temps discret de (xn)n∈Z.

F La densité spectrale de puissance en sortie est H(f)X(f) où X(f) est la transformée de Fourier
rapide de (xn)n∈Z.

V La densité spectrale de puissance en sortie est |H(f)|2σ2.

F La densité spectrale de puissance en sortie est H(f)σ.

44. Un bruit blanc numérique :

V a une densité spectrale de puissance constante.

F a une densité spectrale de puissance égale à un Dirac.

F a pour transformée de Fourier une constante.

F a pour transformée de Fourier un Dirac.

45. La figure 7 représente schématiquement le module de la réponse en fréquence d’un filtre numérique

en fonction de la fréquence normalisée.

0 1

f (fréq. normalisée)

|H(f)|

Figure 7 – Module de la réponse en fréquence du filtre question 45

F il s’agit d’un filtre passe-bas.

V il s’agit d’un filtre passe-haut.

F il s’agit d’un filtre passe-bande.

F il s’agit d’un filtre coupe-bande.
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0 1

f (fréq. normalisée)

|H(f)|

Figure 8 – Module de la réponse en fréquence du filtre question 46

46. La figure 8 représente schématiquement le module de la réponse en fréquence d’un filtre numérique
en fonction de la fréquence normalisée.

V il s’agit d’un filtre passe-bas.

F il s’agit d’un filtre passe-haut.

F il s’agit d’un filtre passe-bande.

F il s’agit d’un filtre coupe-bande.

47. La figure 9 représente schématiquement le module de la réponse en fréquence d’un filtre numérique
en fonction de la fréquence normalisée.

0 1

f (fréq. normalisée)

|H(f)|

Figure 9 – Module de la réponse en fréquence du filtre question 47

F il s’agit d’un filtre passe-bande et sa réponse impulsionnelle est à valeurs complexes.

F il s’agit d’un filtre coupe-bande et sa réponse impulsionnelle est à valeurs réelles.

V il s’agit d’un filtre passe-haut et sa réponse impulsionnelle est à valeurs complexes.

F il s’agit d’un filtre passe-haut et sa réponse impulsionnelle est à valeurs réelles.

48. Soit Γx(f) la densité spectrale d’énergie (ou respectivement de puissance) d’un signal x(t).

F L’énergie (ou respectivement la puissance) du signal vaut
∫
R
|Γx(f)|2 df .

V L’énergie (ou respectivement la puissance) du signal vaut
∫
R
Γx(f) df .

F L’énergie (ou respectivement la puissance) du signal vaut Γx(0).

F L’énergie (ou respectivement la puissance)du signal vaut |Γx(0)|2.

49. Un filtre numérique rationnel défini par sa fonction de transfert en z H [z] ou par sa réponse impul-
sionnelle (hn)n∈Z est stable si et seulement si :

F les pôles de H [z] sont à partie réelle négative.

V
∑+∞

k=−∞ |hk| est fini.

V l’ensemble {z ∈ C/|z| = 1} est inclus dans le domaine de convergence de H [z].

F limn→+∞ hn = 0.
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50. Pour les signaux aléatoires :

V la stationnarité au sens strict entraîne la stationnarité au sens large.

F la stationnarité au sens strict entraîne l’ergodicité.

F la stationnarité au sens large entraîne la stationnarité au sens strict.

F la stationnarité au sens large et au sens strict entraînent l’ergodicité.

51. L’autocorrélation d’un signal :

F est toujours positive.

F est positive par définition.

V est définie positive.

V présente une symétrie hermitienne.

52. Un filtre numérique défini par sa réponse impulsionnelle (hn)n∈Z ou sa fonction de transfert en z
H [z] est stable et causal si et seulement si :

V hn = 0 pour tout n < 0 et
∑

n∈Z
|hn| est fini.

F Tous les hn sont de module inférieur à 1.

V Le domaine de convergence de H [z] est le complémentaire d’un disque et le cercle unité ap-
partient à ce domaine de convergence.

F Le domaine de convergence de H [z] est un disque et le cercle unité appartient à ce domaine
de convergence.

53. L’algorithme de Transformée de Fourier Rapide (ou FFT) :

F est un algorithme rapide de calcul de transformée de Fourier à temps continu.

F est un algorithme rapide de calcul temps réel de la transformée de Fourier d’un signal analo-
gique.

F effectue un produit matriciel de transformée de Fourier discrète lorsque le nombre d’échan-
tillons est un multiple de 2.

V effectue un produit matriciel de transformée de Fourier discrète lorsque le nombre d’échan-
tillons est une puissance de 2.

54. Soit un filtre temps continu de réponse impulsionnelle h(t) et de réponse en fréquence H(f). Le
filtre est excité en entrée par un signal aléatoire x(t) stationnaire au sens large et sa sortie est notée
y(t).

F Les transformées de Fourier X(f) et Y (f) des signaux aléatoires x(t) et y(t) sont liées par
Y (f) = H(f)X(f).

F Les transformées de Fourier X(f) et Y (f) des signaux aléatoires x(t) et y(t) sont liées par
Y (f) = H(f) ⋆ X(f) où ⋆ représente la convolution.

F Les transformées de Fourier X(f) et Y (f) des signaux aléatoires x(t) et y(t) sont égales aux
densités spectrales de puissance respectives et on a Y (f) = |H(f)|2X(f).

V On ne peut pas définir de transformée de Fourier des signaux aléatoires x(t) et y(t) dans le
sens usuel (càd tel que rencontré en cours de mathématiques de début d’année).


