A Goal-Based Approach to Semantic Web Services

Nicolas Prat, Essec Business School

5th AIM pre-ICIS Workshop, Milwaukee, 10 December 2006

Outline

- 1. Introduction
- 2. Semantic Web services
- 3. A lingusitic approach to goal formalisation and classification
- 4. Applying goal formalisation and classification to semantic Web services
- 5. Discussion and conclusion

1. Introduction

Introduction

- Definition of Web services:
 - ➤ Self-contained, self-describing, modular applications that can be published, discovered and invoked across the Web [Wang et al, 04].
- 3 main standards:
 - ➤ SOAP (Simple Object Access Protocol)
 - ➤ WSDL (Web Services Description Language)
 - ➤ UDDI (Universal Description, Discovery and Integration).
- Reusable software components.
- Interest from a management point of view.

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

3

1. Introduction

Introduction

- Originally, Web services primarily based on syntax.
- Semantic Web services = semantic Web + Web services.
- This paper => contribution to semantic Web services, drawing from previous research on goal formalisation and classification [Prat 97].
 - > A Web service is described by its interface (goal).
 - ➤ A goal = a verb with parameters, each parameter having a semantic function.
 - ➤ Integrated representation of the goal of the Web service and its parameters.
 - > Better representation of semantics.
 - > From this formalisation, domain-independent hierarchy of Web services.

Semantic Web services

- Purpose: to add more semantics into Web services so that their meaning and functionality are specified in an unambiguous and machine-interpretable way.
- A semantic Web service description relies on two major constituents [Sabou et al,05]:
 - A generic Web service description language to specify the main elements of the service. Examples: OWL-S, DAML-S. In OWL-S, a service is described by (1) a service profile, (2) a process model and (3) the grounding (messages).
 - ➤ A Web service domain ontology, which specifies domain concepts and functionality types.

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

5

2. Semantic Web services

Previous work

- [Paolucci et al, 2002]:
 - ➤ Web services capabilities represented in DAML-S (in the profile section).
 - ➤ Compute a semantic match between Web services advertisements and requests.
 - > Web services matched based on their inputs and outputs.
 - ➤ Other related papers.
- [Verma et al, 2005]:
 - ➤ Environment for publication and discovery of semantic Web services among multiple registries.
 - > Mapping based on inputs and outputs.
- [Freisen & Altenhofen, 2005]:
 - ➤ Algorithm optimising the discovery process for composed semantic Web services.
 - >> Semantic matchmaking based on goals.
 - ➤ However, not much detail on how goals are formally represented.

Previous work

- [Klein & Bernstein, 2001]:
 - ➤ A set of ideas for improving Web service retrieval.
 - > Service publication and retrieval based on the process ontology defined in the MIT Process handbook.
- To sum up:
 - ➤ Inputs and outputs often central in describing and matching the interface of Web services.
 - ➤Other characteristics of Web services also recognised as important.
 - ➤ However, these different characteristics should be treated homogeneously, in an integrated manner.
 - ➤ What we propose : a representation of Web services with their different parameters and the role (i.e. semantic function) of these parameters.

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

7

3. A lingusitic approach to goal formalisation and classification

Goal formalisation and classification [Prat, 1997]

- Linguistic approach, based on Fillmore's case grammar and its extensions.
 - > Cases (a.k.a. semantic functions) = types of semantic relationships that groups of words have with the verb in any clause.
- A goal = a verb followed by parameters, each parameter having a semantic function.
- 11 semantic functions, e.g. Object, Source, Result or Beneficiary.
- Verb frames, based on semantic functions.
- Domain-independent hierarchy of goal verbs, based on verb frames.

3. A lingusitic approach to goal formalisation and classification

Hierarchy of goal verbs (upper view) [Prat, 1997]

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

Ç

4. Applying goal formalisation and classification to semantic Web services

Web services formalisation

- A Web service = a goal with parameters, each parameter having a semantic function.
- For Web services, 5 semantic functions: Object, Result, Source, Manner and Beneficiary.
- Object (Obj)
 - \rightarrow <u>Definition</u>: The object(s) affected by the goal.
 - **>** Example:

Update(conference reservations)_{Obi}

- Result (Res)
 - ➤ <u>Definition</u>: The object(s) *e*ffected by the goal, i.e. resulting from its achievement.
 - **>** Example:

Generate(passwords that are strong)_{Res}

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

4. Applying goal formalisation and classification to semantic Web services

Web services formalisation

- Source (So)
 - ➤ <u>Definition</u>: The starting point (generally information source) of the goal.
 - **>** Example:

Generate(a chart)_{Res}(from chart parameters)_{So}

- Manner (Man)
 - ➤ <u>Definition</u>: Specifies the way in which the goal is to be achieved.
 - ≥ <u>Example</u>:

 $Process(credit\ card\ transactions)_{Obj}(in\ real\ time)_{Man}$

- Beneficiary (Ben)
 - ➤ <u>Definition</u>: The person or group in favour of whom the goal is to be achieved.
 - **>** Example:

Send(payments)_{Obi}(to members and non members)_{Ben}(using(Fidesic e-payments)_{Obi})_{Man}

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

li.

4. Applying goal formalisation and classification to semantic Web services

Hierarchy of Web services

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

4. Applying goal formalisation and classification to semantic Web services

Hierarchy of Web services

- Our hierarchy of Web services is domain-independent.
- Applications:
 - ➤ Definition of categories and subcategories in a directory of public Web services.
 - ➤ Automated discovery of Web services.

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

12

4. Applying goal formalisation and classification to semantic Web services

Application to Web service discovery

- Matchmaking of Web services advertisements and requests.
- Matchmaking performed by comparing the goal verbs of the advertisement and request, and then their parameters.
- For comparing goal verbs, use of the hierarchy presented above.
- For comparing parameters, use of the semantic functions.
 - ➤ Parameters compared in the following order: (1) Result, (2) Object, (3) Source, (4) Beneficiary and (5) Manner.

Conclusion

- Contribution to semantic Web services.
- A Web service is described by its interface, i.e. its goal. A goal is a verb with parameters, each parameter having a semantic function.
- Domain-independent ontology (hierarchy) of Web services.
- Application to Web service discovery.

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

15

5. Discussion and conclusion

Discussion

- The verb describing a Web service, as well as the different parameters, are treated homogenously, in an integrated manner.
- Our description of a Web service is richer (and also more conceptual) than the simple distinction between inputs and outputs of Web services.
- Our description is also closer to the natural language description of Web services.
- However, we can establish a correspondence table:

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

Discussion

	INPUT	OUTPUT
OBJECT	*	*
RESULT		*
SOURCE	*	
MANNER	*	
BENEFICIARY	*	

Correspondence between semantic functions and inputs/outputs

Nicolas PRAT - 5th AIM pre-ICIS Workshop, Milwaukee, December 2006

17

5. Discussion and conclusion

Future work

- Research in progress.
- Future work:
 - ➤ Validate/refine the formalisation of Web service goals .
 - ➤ Refine the hierarchy of Web services.
 - ➤ Refine the algorithm for Web services discovery.