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• Recommender systems: applications and taxonomy

• Netflix competition

• Matrix Factorization: concepts and implementation

• Deep Recommender Systems: concepts and implementation

• Other improvements (stars vs. thumbs, blending, etc.)



Section 1

Introduction to Recommender Systems



Recommendation systems
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Systems that aim to propose items that a particular user might be
interested in.

• E-commerce: Amazon, E-bay

• Multimedia content: Netflix, Spotify, Youtube

• Social Networks: Facebook posts and groups

• Online advertisement: Google

• FMS

Final goal: increase revenues:

• 75% of Netflix’s watched movies and 35% of Amazon’s purchases
come from recommenders [MMN13].



Types of recommendation systems
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Source of information

• Content-based:
Based on the description of the items and the users

– The features of users (age, education, nationality) and of movies
(genre, year, nationality) must be known.

• Collaborative Filtering
Learns what to recommend based on the interaction between users and
items

• Hybrid
Important particularly for “cold start” (a user or movie are new - no
interaction has been observed so far).

Types of feedback

• Explicit: stars, thumb up / thumb down, etc.

• Implicit: Clicks, how much time user played a song.



Collaborative filtering
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• Method of making automatic predictions (filtering) about the
interests of a user by collecting preferences or taste information from
many users (collaborating).1

• Assumption: I can guess what you will like if I observe:
– What you have already liked
– The preferences of the others that have liked the same things as you

1wikipedia



Intuition
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• User-Item matrix

• Rating of Alice on Love
Actually?



Netflix
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• The user rates

• The system predicts future rates

• User may correct (the system can periodically re-train)



Netflix Competition Prize
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• 2006-09

• Root Mean Squared Error 0.92525

• 1,000,000 $ to whoever was able to decrease it to 0.8572

• 20K teams



Netflix Competition method
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• Training dataset: 1M
• During the competitions participants evaluated their algorithms:

– Netflix gave 1.4M quiz set (without ratings)
– Participants gave their predicted ratings
– Netflix communicated the RMSQ on the quiz set (no actual

predictions given)

• The “official” score (undiscovered until the end) was the RMSQ on a
1.4M test set



Netflix Competition dataset
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• Each datapoint: [anonimized user id, title, rating, date of rating]

• 480K customers

• 17K movies

Contribution of Netflix competition?

• Many techniques were invented or improved during the competition

• Ex. Matrix Factorization, de facto standard model [Pen18].



Section 2

Matrix Factorization: concepts



Matrix Factorization: Goals
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Terminator
Die 

Hard
Titanic

Pretty 
Woman

Love 
Actually

Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

• Rating matrix R.

• Observed/Missing values.

• Only 1% of user-movie
ratings [Ste15].

• Prediction of missing values
– Rating of Alice on Pretty

Woman?
– Rating of Ruby on

Terminator?

• How is prediction related to
recommendation?



What a machine sees
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Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

User 1 0.1 0.9
User 2 0.1 1
User 3 1 0.1
User 4 1 0.2
User 5 0.1 1
User 6 0.2 1

No semantics

• (Alice(1), Bob(2) ) are no
more similar than (Alice(1),
Ruby(4) )

• (Pretty(4), Love(5) ) are no
more similar than (Love(5),
Terminator(1) )



Matrix factorization
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Find matrices U and V to approximate R:

R≈ R̂ = U ·V

Separation
• In R user and movies information was mixed.
• Now, U (user info) and V (movie info).

Dimensionality reduction
• In R each user was represented by M numbers.
• Now, only by K numbers.
• (also for the movies)



Training
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For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???

• Optimization problem: Find ui and vj, for any user i and movie j,
such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2 = min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).



Training
15 / 56

For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???
• Optimization problem: Find ui and vj, for any user i and movie j,

such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2

= min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).



Training
15 / 56

For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???
• Optimization problem: Find ui and vj, for any user i and movie j,

such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2 = min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).



Training: Remarks
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Determine U and V such that R̂ is “as close as possible” to R.

• Optimization problem:
Find U and V such that

min ∑
(i,j) observed

||rij−ui ·vj||2

• The computation of U and V only depends on the observed values.
• But we get all the ratings r̂ij, also for non observed user-movie

ratings.
• We are able to predict non-observed ratings!



Similarity
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ui ·vj = ||ui|| · ||vj|| · cosx

x

ui 

vj

Which angle x maximizes ui ·vj?

If ui ·vj high⇒ cosx high⇒ x small⇒ the vectors are similar.
ui ·vj is the affinity of user i toward movie j.



Similarity
17 / 56

ui ·vj = ||ui|| · ||vj|| · cosx

x

ui 

vj

Which angle x maximizes ui ·vj?
If ui ·vj high⇒ cosx high⇒ x small⇒ the vectors are similar.

ui ·vj is the affinity of user i toward movie j.



Insights on training
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x

ui 

vj

• Optimization problem:
Find U and V such that

min ∑
(i,j) observed

||rij−ui ·vj||2

• If rij ≈ 1, the training algorithm should construct ui and vj such that
their angle is . . . ?

• What if rij ≈ 0?



Example of predicted rating matrix
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Original rating matrix R
Terminator

Die 
Hard

Titanic
Pretty 

Woman
Love 

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

Predicted rating matrix R̂ = U ·V
Terminator

Die 
Hard

Titanic
Pretty 

Woman
Love 

Actually
Alice 0.1 0.04 0.86 0.94 0.86
Bob 0.04 0.1 0.84 1 0.78
John 0.88 1 0.1 0.2 0.1
Ruby 0.78 1 0.4 0.6 0.2
Nick 0.1 0.12 0.76 9.6 9.6
Paul 0.4 0.24 1 0.8 0.9

• The predicted matrix has also values for unobserved ratings.
• Would you agree with the values?

• For observed (i, j), r̂ij ≈ rij, but they are not always the same.
Can we do better?

• No, to minimize the overall error

∑
(i,j) observed

||rij− r̂ij||2 = ∑
(i,j) observed

||rij−ui ·vj||2

we need to sacrifice the precision on the single observed (i, j).
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Latent factors
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Fixing K = 2, V=

Terminator
Die 

Hard Titanic
Pretty 

Woman
Love 

Actually
Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

• Can you give a meaning to Factor 1 and 2 by looking at V?

• Latent factors: they are hidden in the data and show up “magically”
after matrix factorization.

• They may have a meaning, but not necessarily.
• We can now compute “distance” between movies.
• Our human knowledge about movies is now better embedded in the

matrix.
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Training: other insights
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R =
Terminator

Die 
Hard

Titanic
Pretty 

Woman
Love 

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

V =
Terminator

Die 
Hard Titanic

Pretty 
Woman

Love 
Actually

Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

min ∑
(i,j) observed

||rij−ui ·vj||2

• Build a possible uAlice = (a,b).
• It must be such that uAlice ·vterminator ≈ 0.1 while uAlice ·vtitanic ≈ 0.9
• . . .

Remarks:
• The value of uAlice is determined by the affinity of Alice on the

movies she has ranked.
• We never construct ui and vj by hand. We use algorithms instead.



Latent Factors and User-Movie affinity
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U =

Factor 1 Factor 2

Alice 0.1 1
Bob 0.04 0.95
John 1 0.04
Ruby 1 1
Nick 0.2 0.95
Paul 0.06 1

u
i

V =

Terminator
Die 

Hard Titanic
Pretty 

Woman
Love 

Actually
Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

• Factor 1 is at the same time
– How much action is in a movie
– How much action a user likes

• Factors have the same semantic on users and movies.



Recap on latent factos
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• They can have some semantics.

• The semantic is common to both users and movies.
• They allow to evaluate similarity between users and between movies:

– If ui is similar to ui′ , then users i and i′ have the same tastes, even if
they have no common movie ranked.

– If vj is similar to vj′ , then movie j and j′ are of the same kind, even if
no common user have ranked them.

– Note that this information is not present in the original rating matrix
R.

• They allow to evaluate the affinity of user i and movie j by
computing ui ·vj.



Section 3

Matrix Factorization in practice



Embedding
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• Motivation:
– We had users Alice, Bob, etc. and movies Titanic, Die Hard, etc.
– To predict the rating, we transformed them in vectors uAlice,uBob, . . .

and vTitanic,vDie Hard, . . . .
• Definition:

Embedding is the process of mapping objects into numerical vectors,
so that we can apply mathematical operations.

• Can you construct a user-to-vector embedding arbitrarily?

• Matrix Factorization: does it construct an arbitrary embedding or a
good? In what sense?

• Matrix Factorization finds a good embedding, i.e., the one that

min ∑
(i,j) observed

||rij−ui ·vj||2

• Other uses of embedding: Natural Language Processing (NLP).
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Keras
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• Python library used for Neural Networks and Deep Learning

• ... but not only. We will use it for Neural Networks
• Some facts

– Based on Python
– Open source
– Primary author and maintainer is Franois Chollet, a French Google

engineer.



Matrix Factorization in Keras
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Embedding
layer

Embedding
layer

user i

movie j

Dot
Product

layer

ui

vj

r̂ ij

• Keras performs iterations

• First, the Embedding Layers initialize U and V arbitrarily
• Then, at each iteration

– Measure the error between the prediction and the real ratings
∑(i,j) observed ||rij− r̂ij||2.

– The Embedding Layers adjust U and V in order to decrease the error,
leveraging Stochastic Gradient Descent.



Supervised? Unsupervised?
Semi-supervised? 28 / 56

It can be considered both:
• Unsupervised:

– Dimensionality Reduction: We represent the rating matrix R with two
smaller matrices U and V

– From O(NM) to O((N +M)K)

• Semisupervised:
– Missing labels are useful to learning
– Ex.: Suppose DieHard has been rated high by few users U1.
– Other users U2 like similar movies to U1.
– Bob likes similar movies to U2
– Will Bob like DieHard?

– Yes. To infer (Bob,DieHard) rating we are using U2, although we do
not have the rate label of U2 on DieHard.



Supervised? Unsupervised?
Semi-supervised? 28 / 56

It can be considered both:
• Unsupervised:

– Dimensionality Reduction: We represent the rating matrix R with two
smaller matrices U and V

– From O(NM) to O((N +M)K)

• Semisupervised:
– Missing labels are useful to learning
– Ex.: Suppose DieHard has been rated high by few users U1.
– Other users U2 like similar movies to U1.
– Bob likes similar movies to U2
– Will Bob like DieHard?
– Yes. To infer (Bob,DieHard) rating we are using U2, although we do

not have the rate label of U2 on DieHard.



Matrix Factorization
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Let us code . . .



Section 4

Deep Recommender Systems



Motivation
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So far, we have approximated the rating as:

r̂ij = ui ·vj

To be more flexible, we may want to approximate it as

r̂ij = f (ui,vj)

and find the “best” f , i.e., the one that

min ∑
(i,j)observed

||rij− f (ui,vj)||2

The “best” f can be obtained with a Neural Network!



Neural Network - Human brain
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- By ZEISS Microscopy from Germany (Cultured Rat Hippocampal Neuron) [CC BY 2.0
(http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

- https://pixabay.com/en/neurons-brain-cells-brain-structure-1739997/

• Walter Pitts: logician
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

• Warren McCulloc: neurophysiologist



The life of a genius
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Walter Pitts:

• At 12 read Principia Mathematica from
Bertrand Russel.

• He wrote to Russel about some problems of
his book.

• Russel invited him to Cambridge University
and Pitts refused.

source: Wikipedia



Neural Network - Model
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∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

Output Layer OutputHidden Layer
β11(1)β01(1)β21(1)

β501)

Input h x1(1)
x2(1)

β0(2)β1(2)β2(2)β3(2) hx1(1) 1

r̂

In our case, the z1,z2, . . . are the elements of the vectors ui and vj.
r̂ = fβ (z). f is parametrized by the weights.



Neural Network - Single neuron
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Let us look at the m-th neuron in the
l-layer.

• Output from the previous
level: x(l−1)

• Weights: βββ
(l)
m

• Activation function h(·),
e.g. sigmoid, linear, etc.

• Output:
x(l)m = h

(
βββ
(l)′
m x(l−1)

)
. This

can be feed to further
neurons.



Approximating function
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Architecture for recommenders
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r̂ij = fβ (ui,vj)

Training: Find β and the embedding i→ ui and j→ vj such that



Training
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Comparison
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Matrix Factorization

r̂ij = ui ·vi

Embedding
layer

Embedding
layer

user i

movie j

Dot
Product

layer

ui

vj

r̂ ij

Neural Network

r̂ij = fβ (ui,vi)
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∑

∑
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z
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3

z
4
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Embedding
layer

Embedding
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movie j
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ui    

Advantages? Disadvantages?

• Neural Networks are more general? But ...
• More difficult to train (Embedding + β )
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Universality
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• Universal approximation theorem:
For any continuous function g(·), there exist a neural network with
one hidden layer that approximates it, i.e., fβ (·)≈ g(·).

• Therefore, we can find a neural network that can approximate
g(ui,vj) = ui ·vj

• So, with Neural Networks we can approximate Matrix Factorization
but also do many more ... ⇒ generality.

• But the theorem does not tell how many neurons we need! We may
need a huge number.



Recommender Systems with Neural
Networks 41 / 56

Let us code ....



Section 5

Other improvements



Blending
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• The best teams of Netflix Prize used > 100 models

• Blend: the prediction is a linear model of the result of other models

r̂ij = ∑
l

wl ·gl(i, j)

• r̂ij: final prediction of rating of user i on movie j

• gl(i, j): prediction by the l-th model

• wl weight, computed by linear regression

• We use models as predictors of a bigger model.



Blending
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r̂ij = ∑
l

wl ·gl(i, j)

• Model l may be better than the others depending on regions of (i, j)
(e.g., amount of ratings of i or on j)

r̂ij = ∑
l

wl(i, j) ·gl(i, j)

• How do we get wl(i, j)? We need to train the blended model.



Stars vs. Thumb up / Thumb down
45 / 56

• Stars were not ratings from other users, but a prediction of how
much you will like the movie.

• They have been removed now. Why? [McA17]

• Not good for recommendations
– Users were objective: “I do not like the movie but, to be honest, it is a

good movie. I rate it 4 stars.” What is the consequence?
– The system was proposing movies “objectively good”, even if the user

may not like it
– No incentive in rating (the user do not see the improvement of

suggestions)

• 200% more ratings now!
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RMSQ is not enough
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• Just looking at the RMSQ may be misleading

• Final Goal: suggest items that a user will like

• The absolute value of the RMSQ is not important

• Heterogeneity of propositions is important

• Context
• RMSQ weights equally low and high rate, while only high rate items

matter.
– Evaluate error only on high rate data points.



Open dataset: watch out for lawyers!
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From wikipedia:2

• Although the data sets were anonymized . . . in 2007 two researchers
from the University of Texas were able to identify individual users
by matching the data sets with film ratings on the Internet Movie
Database(IMD) . . .

• In 2009, an anonymous Netflix user sued Netflix. . .

• This, as well as concerns from the Federal Trade Commission, led to
the cancellation of a second Netflix Prize competition in 2010.

2https://en.wikipedia.org/wiki/Recommender_system

https://en.wikipedia.org/wiki/Recommender_system


Summary
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• Recommendation Systems and Collaborative Filtering (CF)

• User based CF

• Item based CF

• Singular Value Decomposition

• Blending

• Other tricks for recommendation systems



If you want to know more
49 / 56

• Bell, R. M., Park, F., Volinsky, C., & Park, F. (2008). The BellKor
2008 Solution to the Netflix Prize, (12), 121.

• Grisel O., Neural Networks for Recommender Systems

• Embedding applied to graphs [Fra19].
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• To predict the rating of a user u on an item i, I observe what similar
users rated.

• Similarity between users u,v: correlation:

ρuv =
∑i∈Iuv(ru,i− r̄u) · (rv,i− r̄v)√

∑i∈Iuv(ru,i− r̄u)2 ·
√

∑i∈Iuv(rv,i− r̄v)2

• Iuv: items rated by both u,v

• ru,i: rating of user u on item i

• r̄u: average rate of user u
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• Training: computing pairwise ρuv

• Prediction with K Nearest Neighbors (KNN) method
• We take the K users v most similar to u

r̂ui = r̄u +
∑v∈K ρuv · (rvi− r̄v)

∑v∈K |ρuv|
• Problems

– Information is sparse: Difficult to find other users that rated the same
things as u

Terminator
Die 

Hard
Titanic

Pretty 
Woman

Love 
Actually

Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1
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• Another3 similarity measure between users u,v: cosine:

ρuv =
(ru− r̄u1)′ · (rv− r̄v1)
||ru− r̄u1|| · ||rv− r̄v1||

• ru = (ru1,ru2, . . .)
′

• Cosine of the angle between the vectors

• Self-damping effect

3M. Ekstrand. Similarity Functions for User-User Collaborative Filtering
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• 1998: Amazon Patent US6266649B1

• Training: compute similarity ρij between items i, j

ρij =
∑u∈Uij(ru,i− r̄i) · (ru,j− r̄j)√

∑u∈Uij(ru,i− r̄i)2 ·
√

∑u∈Uij(ru,j− r̄j)2

• Uij: users who rated both items i, j

• r̄i: average rate for item i

• Predict

r̂ui = r̄i +
∑j∈K ρij · (ruj− r̄j)

∑j∈K |ρij|

• It overcomes the problems of user-based
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• Ex. positive correlation: Harry Potter and Lord of Rings
If you like one, you will like the other

• Ex. negative correlation: Saving Private Ryan vs. Godzilla
If you like one, you will hate the other
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