
0 / 56

Recommendation Systems

Andrea Araldo

March 5, 2020

Outline
1 / 56

• Recommender systems: applications and taxonomy

• Netflix competition

• Matrix Factorization: concepts and implementation

• Deep Recommender Systems: concepts and implementation

• Other improvements (stars vs. thumbs, blending, etc.)

Section 1

Introduction to Recommender Systems

Recommendation systems
3 / 56

Systems that aim to propose items that a particular user might be
interested in.

• E-commerce: Amazon, E-bay

• Multimedia content: Netflix, Spotify, Youtube

• Social Networks: Facebook posts and groups

• Online advertisement: Google

• FMS

Final goal: increase revenues:

• 75% of Netflix’s watched movies and 35% of Amazon’s purchases
come from recommenders [MMN13].

Types of recommendation systems
4 / 56

Source of information

• Content-based:
Based on the description of the items and the users

– The features of users (age, education, nationality) and of movies
(genre, year, nationality) must be known.

• Collaborative Filtering
Learns what to recommend based on the interaction between users and
items

• Hybrid
Important particularly for “cold start” (a user or movie are new - no
interaction has been observed so far).

Types of feedback

• Explicit: stars, thumb up / thumb down, etc.

• Implicit: Clicks, how much time user played a song.

Collaborative filtering
5 / 56

• Method of making automatic predictions (filtering) about the
interests of a user by collecting preferences or taste information from
many users (collaborating).1

• Assumption: I can guess what you will like if I observe:
– What you have already liked
– The preferences of the others that have liked the same things as you

1wikipedia

Intuition
6 / 56

• User-Item matrix

• Rating of Alice on Love
Actually?

Netflix
7 / 56

• The user rates

• The system predicts future rates

• User may correct (the system can periodically re-train)

Netflix Competition Prize
8 / 56

• 2006-09

• Root Mean Squared Error 0.92525

• 1,000,000 $ to whoever was able to decrease it to 0.8572

• 20K teams

Netflix Competition method
9 / 56

• Training dataset: 1M
• During the competitions participants evaluated their algorithms:

– Netflix gave 1.4M quiz set (without ratings)
– Participants gave their predicted ratings
– Netflix communicated the RMSQ on the quiz set (no actual

predictions given)

• The “official” score (undiscovered until the end) was the RMSQ on a
1.4M test set

Netflix Competition dataset
10 / 56

• Each datapoint: [anonimized user id, title, rating, date of rating]

• 480K customers

• 17K movies

Contribution of Netflix competition?

• Many techniques were invented or improved during the competition

• Ex. Matrix Factorization, de facto standard model [Pen18].

Section 2

Matrix Factorization: concepts

Matrix Factorization: Goals
12 / 56

Terminator
Die

Hard
Titanic

Pretty
Woman

Love
Actually

Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

• Rating matrix R.

• Observed/Missing values.

• Only 1% of user-movie
ratings [Ste15].

• Prediction of missing values
– Rating of Alice on Pretty

Woman?
– Rating of Ruby on

Terminator?

• How is prediction related to
recommendation?

What a machine sees
13 / 56

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

User 1 0.1 0.9
User 2 0.1 1
User 3 1 0.1
User 4 1 0.2
User 5 0.1 1
User 6 0.2 1

No semantics

• (Alice(1), Bob(2)) are no
more similar than (Alice(1),
Ruby(4))

• (Pretty(4), Love(5)) are no
more similar than (Love(5),
Terminator(1))

Matrix factorization
14 / 56

Find matrices U and V to approximate R:

R≈ R̂ = U ·V

Separation
• In R user and movies information was mixed.
• Now, U (user info) and V (movie info).

Dimensionality reduction
• In R each user was represented by M numbers.
• Now, only by K numbers.
• (also for the movies)

Training
15 / 56

For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???

• Optimization problem: Find ui and vj, for any user i and movie j,
such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2 = min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).

Training
15 / 56

For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???
• Optimization problem: Find ui and vj, for any user i and movie j,

such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2

= min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).

Training
15 / 56

For a value K (fixed by design), determine U and V that best
approximates R.

• ui: related to user i; vj: related to movie j. r̂ij =???
• Optimization problem: Find ui and vj, for any user i and movie j,

such that Loss Function (error):

min ∑
(i,j) observed

||rij− r̂ij||2 = min ∑
(i,j) observed

||rij−ui ·vj||2

• Contraint: each element in [0,1] (§3.6.6 of [Agg16])
• Equivalent to finding matrices U and V .
• Several methods to solve it (out of scope).

Training: Remarks
16 / 56

Determine U and V such that R̂ is “as close as possible” to R.

• Optimization problem:
Find U and V such that

min ∑
(i,j) observed

||rij−ui ·vj||2

• The computation of U and V only depends on the observed values.
• But we get all the ratings r̂ij, also for non observed user-movie

ratings.
• We are able to predict non-observed ratings!

Similarity
17 / 56

ui ·vj = ||ui|| · ||vj|| · cosx

x

ui

vj

Which angle x maximizes ui ·vj?

If ui ·vj high⇒ cosx high⇒ x small⇒ the vectors are similar.
ui ·vj is the affinity of user i toward movie j.

Similarity
17 / 56

ui ·vj = ||ui|| · ||vj|| · cosx

x

ui

vj

Which angle x maximizes ui ·vj?
If ui ·vj high⇒ cosx high⇒ x small⇒ the vectors are similar.

ui ·vj is the affinity of user i toward movie j.

Insights on training
18 / 56

x

ui

vj

• Optimization problem:
Find U and V such that

min ∑
(i,j) observed

||rij−ui ·vj||2

• If rij ≈ 1, the training algorithm should construct ui and vj such that
their angle is . . . ?

• What if rij ≈ 0?

Example of predicted rating matrix
19 / 56

Original rating matrix R
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

Predicted rating matrix R̂ = U ·V
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.04 0.86 0.94 0.86
Bob 0.04 0.1 0.84 1 0.78
John 0.88 1 0.1 0.2 0.1
Ruby 0.78 1 0.4 0.6 0.2
Nick 0.1 0.12 0.76 9.6 9.6
Paul 0.4 0.24 1 0.8 0.9

• The predicted matrix has also values for unobserved ratings.
• Would you agree with the values?

• For observed (i, j), r̂ij ≈ rij, but they are not always the same.
Can we do better?

• No, to minimize the overall error

∑
(i,j) observed

||rij− r̂ij||2 = ∑
(i,j) observed

||rij−ui ·vj||2

we need to sacrifice the precision on the single observed (i, j).

Example of predicted rating matrix
19 / 56

Original rating matrix R
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

Predicted rating matrix R̂ = U ·V
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.04 0.86 0.94 0.86
Bob 0.04 0.1 0.84 1 0.78
John 0.88 1 0.1 0.2 0.1
Ruby 0.78 1 0.4 0.6 0.2
Nick 0.1 0.12 0.76 9.6 9.6
Paul 0.4 0.24 1 0.8 0.9

• The predicted matrix has also values for unobserved ratings.
• Would you agree with the values?
• For observed (i, j), r̂ij ≈ rij, but they are not always the same.

Can we do better?

• No, to minimize the overall error

∑
(i,j) observed

||rij− r̂ij||2 = ∑
(i,j) observed

||rij−ui ·vj||2

we need to sacrifice the precision on the single observed (i, j).

Example of predicted rating matrix
19 / 56

Original rating matrix R
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

Predicted rating matrix R̂ = U ·V
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.04 0.86 0.94 0.86
Bob 0.04 0.1 0.84 1 0.78
John 0.88 1 0.1 0.2 0.1
Ruby 0.78 1 0.4 0.6 0.2
Nick 0.1 0.12 0.76 9.6 9.6
Paul 0.4 0.24 1 0.8 0.9

• The predicted matrix has also values for unobserved ratings.
• Would you agree with the values?
• For observed (i, j), r̂ij ≈ rij, but they are not always the same.

Can we do better?
• No, to minimize the overall error

∑
(i,j) observed

||rij− r̂ij||2 = ∑
(i,j) observed

||rij−ui ·vj||2

we need to sacrifice the precision on the single observed (i, j).

Latent factors
20 / 56

Fixing K = 2, V=

Terminator
Die

Hard Titanic
Pretty

Woman
Love

Actually
Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

• Can you give a meaning to Factor 1 and 2 by looking at V?

• Latent factors: they are hidden in the data and show up “magically”
after matrix factorization.

• They may have a meaning, but not necessarily.
• We can now compute “distance” between movies.
• Our human knowledge about movies is now better embedded in the

matrix.

Latent factors
20 / 56

Fixing K = 2, V=

Terminator
Die

Hard Titanic
Pretty

Woman
Love

Actually
Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

• Can you give a meaning to Factor 1 and 2 by looking at V?
• Latent factors: they are hidden in the data and show up “magically”

after matrix factorization.
• They may have a meaning, but not necessarily.
• We can now compute “distance” between movies.
• Our human knowledge about movies is now better embedded in the

matrix.

Training: other insights
21 / 56

R =
Terminator

Die
Hard

Titanic
Pretty

Woman
Love

Actually
Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

V =
Terminator

Die
Hard Titanic

Pretty
Woman

Love
Actually

Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

min ∑
(i,j) observed

||rij−ui ·vj||2

• Build a possible uAlice = (a,b).
• It must be such that uAlice ·vterminator ≈ 0.1 while uAlice ·vtitanic ≈ 0.9
• . . .

Remarks:
• The value of uAlice is determined by the affinity of Alice on the

movies she has ranked.
• We never construct ui and vj by hand. We use algorithms instead.

Latent Factors and User-Movie affinity
22 / 56

U =

Factor 1 Factor 2

Alice 0.1 1
Bob 0.04 0.95
John 1 0.04
Ruby 1 1
Nick 0.2 0.95
Paul 0.06 1

u
i

V =

Terminator
Die

Hard Titanic
Pretty

Woman
Love

Actually
Factor 1 0.98 1 0.56 0.2 0.06
Factor 2 0.06 0 1 0.98 0.99

v
j

• Factor 1 is at the same time
– How much action is in a movie
– How much action a user likes

• Factors have the same semantic on users and movies.

Recap on latent factos
23 / 56

• They can have some semantics.

• The semantic is common to both users and movies.
• They allow to evaluate similarity between users and between movies:

– If ui is similar to ui′ , then users i and i′ have the same tastes, even if
they have no common movie ranked.

– If vj is similar to vj′ , then movie j and j′ are of the same kind, even if
no common user have ranked them.

– Note that this information is not present in the original rating matrix
R.

• They allow to evaluate the affinity of user i and movie j by
computing ui ·vj.

Section 3

Matrix Factorization in practice

Embedding
25 / 56

• Motivation:
– We had users Alice, Bob, etc. and movies Titanic, Die Hard, etc.
– To predict the rating, we transformed them in vectors uAlice,uBob, . . .

and vTitanic,vDie Hard,
• Definition:

Embedding is the process of mapping objects into numerical vectors,
so that we can apply mathematical operations.

• Can you construct a user-to-vector embedding arbitrarily?

• Matrix Factorization: does it construct an arbitrary embedding or a
good? In what sense?

• Matrix Factorization finds a good embedding, i.e., the one that

min ∑
(i,j) observed

||rij−ui ·vj||2

• Other uses of embedding: Natural Language Processing (NLP).

Embedding
25 / 56

• Motivation:
– We had users Alice, Bob, etc. and movies Titanic, Die Hard, etc.
– To predict the rating, we transformed them in vectors uAlice,uBob, . . .

and vTitanic,vDie Hard,
• Definition:

Embedding is the process of mapping objects into numerical vectors,
so that we can apply mathematical operations.

• Can you construct a user-to-vector embedding arbitrarily?
• Matrix Factorization: does it construct an arbitrary embedding or a

good? In what sense?

• Matrix Factorization finds a good embedding, i.e., the one that

min ∑
(i,j) observed

||rij−ui ·vj||2

• Other uses of embedding: Natural Language Processing (NLP).

Embedding
25 / 56

• Motivation:
– We had users Alice, Bob, etc. and movies Titanic, Die Hard, etc.
– To predict the rating, we transformed them in vectors uAlice,uBob, . . .

and vTitanic,vDie Hard,
• Definition:

Embedding is the process of mapping objects into numerical vectors,
so that we can apply mathematical operations.

• Can you construct a user-to-vector embedding arbitrarily?
• Matrix Factorization: does it construct an arbitrary embedding or a

good? In what sense?
• Matrix Factorization finds a good embedding, i.e., the one that

min ∑
(i,j) observed

||rij−ui ·vj||2

• Other uses of embedding: Natural Language Processing (NLP).

Keras
26 / 56

• Python library used for Neural Networks and Deep Learning

• ... but not only. We will use it for Neural Networks
• Some facts

– Based on Python
– Open source
– Primary author and maintainer is Franois Chollet, a French Google

engineer.

Matrix Factorization in Keras
27 / 56

Embedding
layer

Embedding
layer

user i

movie j

Dot
Product

layer

ui

vj

r̂ ij

• Keras performs iterations

• First, the Embedding Layers initialize U and V arbitrarily
• Then, at each iteration

– Measure the error between the prediction and the real ratings
∑(i,j) observed ||rij− r̂ij||2.

– The Embedding Layers adjust U and V in order to decrease the error,
leveraging Stochastic Gradient Descent.

Supervised? Unsupervised?
Semi-supervised? 28 / 56

It can be considered both:
• Unsupervised:

– Dimensionality Reduction: We represent the rating matrix R with two
smaller matrices U and V

– From O(NM) to O((N +M)K)

• Semisupervised:
– Missing labels are useful to learning
– Ex.: Suppose DieHard has been rated high by few users U1.
– Other users U2 like similar movies to U1.
– Bob likes similar movies to U2
– Will Bob like DieHard?

– Yes. To infer (Bob,DieHard) rating we are using U2, although we do
not have the rate label of U2 on DieHard.

Supervised? Unsupervised?
Semi-supervised? 28 / 56

It can be considered both:
• Unsupervised:

– Dimensionality Reduction: We represent the rating matrix R with two
smaller matrices U and V

– From O(NM) to O((N +M)K)

• Semisupervised:
– Missing labels are useful to learning
– Ex.: Suppose DieHard has been rated high by few users U1.
– Other users U2 like similar movies to U1.
– Bob likes similar movies to U2
– Will Bob like DieHard?
– Yes. To infer (Bob,DieHard) rating we are using U2, although we do

not have the rate label of U2 on DieHard.

Matrix Factorization
29 / 56

Let us code . . .

Section 4

Deep Recommender Systems

Motivation
31 / 56

So far, we have approximated the rating as:

r̂ij = ui ·vj

To be more flexible, we may want to approximate it as

r̂ij = f (ui,vj)

and find the “best” f , i.e., the one that

min ∑
(i,j)observed

||rij− f (ui,vj)||2

The “best” f can be obtained with a Neural Network!

Neural Network - Human brain
32 / 56

- By ZEISS Microscopy from Germany (Cultured Rat Hippocampal Neuron) [CC BY 2.0
(http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

- https://pixabay.com/en/neurons-brain-cells-brain-structure-1739997/

• Walter Pitts: logician
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

• Warren McCulloc: neurophysiologist

The life of a genius
33 / 56

Walter Pitts:

• At 12 read Principia Mathematica from
Bertrand Russel.

• He wrote to Russel about some problems of
his book.

• Russel invited him to Cambridge University
and Pitts refused.

source: Wikipedia

Neural Network - Model
34 / 56

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

Output Layer OutputHidden Layer
β11(1)β01(1)β21(1)

β501)

Input h x1(1)
x2(1)

β0(2)β1(2)β2(2)β3(2) hx1(1) 1

r̂

In our case, the z1,z2, . . . are the elements of the vectors ui and vj.
r̂ = fβ (z). f is parametrized by the weights.

Neural Network - Single neuron
35 / 56

Let us look at the m-th neuron in the
l-layer.

• Output from the previous
level: x(l−1)

• Weights: βββ
(l)
m

• Activation function h(·),
e.g. sigmoid, linear, etc.

• Output:
x(l)m = h

(
βββ
(l)′
m x(l−1)

)
. This

can be feed to further
neurons.

Approximating function
36 / 56

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

Output Layer OutputHidden Layer
β11(1)β01(1)β21(1)

β501)

Input h x1(1)
x2(1)

β0(2)β1(2)β2(2)β3(2) hx1(1) 1

r̂

r̂
β

Architecture for recommenders
37 / 56

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

1

r̂

Embedding
layer

Embedding
layer

user i

movie j
vj

ui

r̂ij = fβ (ui,vj)

Training: Find β and the embedding i→ ui and j→ vj such that

Training
38 / 56

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

1

r̂

Embedding
layer

Embedding
layer

user i

movie j
vj

ui

Training: Find β and the embedding i→ ui and j→ vj such that

min ∑
(i,j) observed

||rij− r̂ij||2 = min ∑
(i,j) observed

||rij− fβ (ui,vj)||2

Comparison
39 / 56

Matrix Factorization

r̂ij = ui ·vi

Embedding
layer

Embedding
layer

user i

movie j

Dot
Product

layer

ui

vj

r̂ ij

Neural Network

r̂ij = fβ (ui,vi)

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

1

r̂

Embedding
layer

Embedding
layer

user i

movie j
vj

ui

Advantages? Disadvantages?

• Neural Networks are more general? But ...
• More difficult to train (Embedding + β)

Comparison
39 / 56

Matrix Factorization

r̂ij = ui ·vi

Embedding
layer

Embedding
layer

user i

movie j

Dot
Product

layer

ui

vj

r̂ ij

Neural Network

r̂ij = fβ (ui,vi)

∑

∑

∑

∑

∑

∑

1

z
1

z
2

z
3

z
4

1

r̂

Embedding
layer

Embedding
layer

user i

movie j
vj

ui

Advantages? Disadvantages?
• Neural Networks are more general? But ...
• More difficult to train (Embedding + β)

Universality
40 / 56

• Universal approximation theorem:
For any continuous function g(·), there exist a neural network with
one hidden layer that approximates it, i.e., fβ (·)≈ g(·).

• Therefore, we can find a neural network that can approximate
g(ui,vj) = ui ·vj

• So, with Neural Networks we can approximate Matrix Factorization
but also do many more ... ⇒ generality.

• But the theorem does not tell how many neurons we need! We may
need a huge number.

Recommender Systems with Neural
Networks 41 / 56

Let us code

Section 5

Other improvements

Blending
43 / 56

• The best teams of Netflix Prize used > 100 models

• Blend: the prediction is a linear model of the result of other models

r̂ij = ∑
l

wl ·gl(i, j)

• r̂ij: final prediction of rating of user i on movie j

• gl(i, j): prediction by the l-th model

• wl weight, computed by linear regression

• We use models as predictors of a bigger model.

Blending
44 / 56

r̂ij = ∑
l

wl ·gl(i, j)

• Model l may be better than the others depending on regions of (i, j)
(e.g., amount of ratings of i or on j)

r̂ij = ∑
l

wl(i, j) ·gl(i, j)

• How do we get wl(i, j)? We need to train the blended model.

Stars vs. Thumb up / Thumb down
45 / 56

• Stars were not ratings from other users, but a prediction of how
much you will like the movie.

• They have been removed now. Why? [McA17]

• Not good for recommendations
– Users were objective: “I do not like the movie but, to be honest, it is a

good movie. I rate it 4 stars.” What is the consequence?
– The system was proposing movies “objectively good”, even if the user

may not like it
– No incentive in rating (the user do not see the improvement of

suggestions)

• 200% more ratings now!

Stars vs. Thumb up / Thumb down
45 / 56

• Stars were not ratings from other users, but a prediction of how
much you will like the movie.

• They have been removed now. Why? [McA17]
• Not good for recommendations

– Users were objective: “I do not like the movie but, to be honest, it is a
good movie. I rate it 4 stars.” What is the consequence?

– The system was proposing movies “objectively good”, even if the user
may not like it

– No incentive in rating (the user do not see the improvement of
suggestions)

• 200% more ratings now!

Stars vs. Thumb up / Thumb down
45 / 56

• Stars were not ratings from other users, but a prediction of how
much you will like the movie.

• They have been removed now. Why? [McA17]
• Not good for recommendations

– Users were objective: “I do not like the movie but, to be honest, it is a
good movie. I rate it 4 stars.” What is the consequence?

– The system was proposing movies “objectively good”, even if the user
may not like it

– No incentive in rating (the user do not see the improvement of
suggestions)

• 200% more ratings now!

RMSQ is not enough
46 / 56

• Just looking at the RMSQ may be misleading

• Final Goal: suggest items that a user will like

• The absolute value of the RMSQ is not important

• Heterogeneity of propositions is important

• Context
• RMSQ weights equally low and high rate, while only high rate items

matter.
– Evaluate error only on high rate data points.

Open dataset: watch out for lawyers!
47 / 56

From wikipedia:2

• Although the data sets were anonymized . . . in 2007 two researchers
from the University of Texas were able to identify individual users
by matching the data sets with film ratings on the Internet Movie
Database(IMD) . . .

• In 2009, an anonymous Netflix user sued Netflix. . .

• This, as well as concerns from the Federal Trade Commission, led to
the cancellation of a second Netflix Prize competition in 2010.

2https://en.wikipedia.org/wiki/Recommender_system

https://en.wikipedia.org/wiki/Recommender_system

Summary
48 / 56

• Recommendation Systems and Collaborative Filtering (CF)

• User based CF

• Item based CF

• Singular Value Decomposition

• Blending

• Other tricks for recommendation systems

If you want to know more
49 / 56

• Bell, R. M., Park, F., Volinsky, C., & Park, F. (2008). The BellKor
2008 Solution to the Netflix Prize, (12), 121.

• Grisel O., Neural Networks for Recommender Systems

• Embedding applied to graphs [Fra19].

References I
50 / 56

Charu C. Aggarwal, Recommender Systems, 2016.

Alicia Frame, Graph Embedding, https://youtu.be/oQPCxwmBiWo,
2019.

Nathan McAlone, The exec who replaced Netflix’s 5-star rating
system with ’thumbs up, thumbs down’ explains why, 2017.

Ian MacKenzie, Chris Meyer, and Steve Noble, How Retailers can
keep up with Consumers, Tech. report, 2013.

Nick Pentreath, Deep Learning for Recommender Systems, 2018.

Harald Steck, Matrix Factorization for Movie Recommendations,
2015.

Section 6

Additional material

User-based collaborative filtering
52 / 56

• To predict the rating of a user u on an item i, I observe what similar
users rated.

• Similarity between users u,v: correlation:

ρuv =
∑i∈Iuv(ru,i− r̄u) · (rv,i− r̄v)√

∑i∈Iuv(ru,i− r̄u)2 ·
√

∑i∈Iuv(rv,i− r̄v)2

• Iuv: items rated by both u,v

• ru,i: rating of user u on item i

• r̄u: average rate of user u

User-based collaborative filtering
53 / 56

• Training: computing pairwise ρuv

• Prediction with K Nearest Neighbors (KNN) method
• We take the K users v most similar to u

r̂ui = r̄u +
∑v∈K ρuv · (rvi− r̄v)

∑v∈K |ρuv|
• Problems

– Information is sparse: Difficult to find other users that rated the same
things as u

Terminator
Die

Hard
Titanic

Pretty
Woman

Love
Actually

Alice 0.1 0.9
Bob 0.1 1
John 1 0.1
Ruby 1 0.2
Nick 0.1 1
Paul 0.2 1

User-based collaborative filtering
54 / 56

• Another3 similarity measure between users u,v: cosine:

ρuv =
(ru− r̄u1)′ · (rv− r̄v1)
||ru− r̄u1|| · ||rv− r̄v1||

• ru = (ru1,ru2, . . .)
′

• Cosine of the angle between the vectors

• Self-damping effect

3M. Ekstrand. Similarity Functions for User-User Collaborative Filtering

Item-based collaborative filtering
55 / 56

• 1998: Amazon Patent US6266649B1

• Training: compute similarity ρij between items i, j

ρij =
∑u∈Uij(ru,i− r̄i) · (ru,j− r̄j)√

∑u∈Uij(ru,i− r̄i)2 ·
√

∑u∈Uij(ru,j− r̄j)2

• Uij: users who rated both items i, j

• r̄i: average rate for item i

• Predict

r̂ui = r̄i +
∑j∈K ρij · (ruj− r̄j)

∑j∈K |ρij|

• It overcomes the problems of user-based

Item-based collaborative filtering
56 / 56

• Ex. positive correlation: Harry Potter and Lord of Rings
If you like one, you will like the other

• Ex. negative correlation: Saving Private Ryan vs. Godzilla
If you like one, you will hate the other

	Introduction to Recommender Systems
	Matrix Factorization: concepts
	Matrix Factorization in practice
	Deep Recommender Systems
	Other improvements
	Additional material

