
Agile Methods of Software Development
http://www-public.int-evry.fr/~gibson/Teaching/Agile/AgileMethods.pdf

Dr J Paul Gibson, Dept. LOR,
TSP, Evry, France

AgileMethods.pptx

October 2011 J Paul Gibson: Agile Methods 1

Structure of the

Presentation

1. Software Process and the

Software Life Cycle

2. History of Agile: More or

less a process?

I Source Texts/ References

Geetesh Bajaj. 2005. Cutting

Edge Powerpoint for

Dummies. For Dummies.

II Quotes

“PowerPoint makes us stupid.”

Secondary Sources

October 2011 J Paul Gibson: Agile Methods 2

3. Agile Fundamentals

4. Comparing Agile Methods

5. Agile Resources

6. Current Agile Research

III Videos (youtube)

Boring Powerpoint (0:52)

http://www.youtube.com/watch

?v=ZVFcagL1nsA

“PowerPoint makes us stupid.”

Gen. James N. Mattis,

US Marine Corps,
http://www.nytimes.com/2010/04/27/world/27powerpoint.html

1. Software Process and the Software Life Cycle

"... the quality of the

people on a project, and

their organization and

management, are much

more important factors

in the success than are

the tools they use or the

How important is a software development process?

October 2011 J Paul Gibson: Agile Methods 3

the tools they use or the

technical approaches

they take."

Frederick P.

Brooks, 1995, The

Mythical Man-Month:

Essays on Software

Engineering

Why Do Software Projects Fail (Often) ?

Most often it is because of:

•A failure to properly manage the risks

•Building the wrong thing

•Being blinded by technology

1. Software Process and the Software Life Cycle

Grady Booch.

1995. Object

Solutions:

Managing the

Object-Oriented

Project. Addison

Wesley Longman

Publishing Co.,

October 2011 J Paul Gibson: Agile Methods

Adopting a good software process & life cycle will help address these failure modes.

Adopting a good software process & life cycle does not guarantee success.

We can never have a completely rational development process

4

Failure to Properly Manage The Risks

As projects progress, they often seem to lose their way:

•Unrealistic schedules and plans are drawn up

•No-one has the nerve to stand up and acknowledge reality

•Many problems are viewed as ‘a simple programming matter’, even

when they are process or architecture concerns

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

when they are process or architecture concerns

•Project direction is set by the most ‘stubborn’ participants because it is

easier for management to let these people have their way.

•Free fall --- No one takes responsibility and everyone waits for the

impact.

•Petty empires form … issues become political

5

Failure from Building the Wrong Thing

Projects can also lose their way because they go adrift in completely

uncharted territory:

•There is no shared vision of the problem being solved.

•The (development) team is clueless as to the final destination

•No-one takes time to validate what is being built with end-users or
domain experts

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Analysts understand the real requirements, but for a number of
political/social reasons, this understanding never reaches the
designers/implementers

•A false air of understanding pervades the project.

•Everyone will be shocked when users reject the delivered software.

•This is known as working in a vacuum.

6

Failure from Being Blinded By Technology

Don’t be blinded by the technology being used to build the software itself:

•Tools can break (be erroneous) … be ready for it

•Project complexity can grow exponentially … can your tools scale up
accordingly?

•Third-party suppliers of new technology often do not deliver on promises

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Third-party suppliers of new technology often do not deliver on promises
(if at all)

•Hardware advances can out-run software development

•Technology can fuel changes to users’ expectations

•New languages/tools/methods are prone to premature adoption

7

Project Styles --- providing a focus --- moving towards a process

There are many different ways of balancing project characteristics. Certain styles

are commonly seen in most industrial projects. These styles correspond to the

drive towards a certain focus:

•Calendar-driven

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Requirements-driven

•Documentation-driven

•Architecture-driven

•Quality-driven

8

What is the Software Process?

A process is a systematic approach performed to achieve a specific
purpose.

A software process is the set of activities, methods, practices, and
transformations used to develop software and associated products that
are released with it.

Software Process Capability is the range of expected results that are
achievable by following the software process.

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

Software Process Capability is the range of expected results that are
achievable by following the software process.

Software process performance is the actual result achieved in the
development of software by following a software process.

Software Process Maturity is the extent to which a Software Process is
defined, managed, controlled, measured and effective.

9

No process is perfect

•Users typically don’t know what they want

1. Software Process and the Software Life Cycle

Parnas, D. and Clements, P.

1986. A Rational Design Process:

How and why to Fake It. IEEE

Transactions on Software

Engineering vol. SE-12(2) p251

Even the most successful projects seem to

take longer, involve more effort, and

require more crisis management than we

really believe they ever should. We must

never rely on the process pulling a project

through. The process can never be

completely rational:

October 2011 J Paul Gibson: Agile Methods

•Users typically don’t know what they want

•Users typically can’t express what they want

•Requirements are incomplete and/or change

•Implementation architectures change

•We all bring intellectual/technological baggage to projects

•Systems built by humans are always subject to human error

•Fundamental limits to the amount of complexity which can be handled

10

What is the Software Life Cycle?

The software life cycle is the collection of phases through which a software product

passes from initial conception through to retirement from service.

•Every software product has a life cycle.

•Life cycles used to be typically quite long—some software products

have been “alive” for 30 years.

•Life cycles are shortening due to technological advances

Life Cycle Phases - Implicitly or explicitly, all software products go through at least the

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

Life Cycle Phases - Implicitly or explicitly, all software products go through at least the

following phases:

• Requirements—determine customer needs and product constraints

• Design—determine the structure/organisation of the software system

• Coding—write the software

• Testing—exercise the system to find and remove defects

• Maintenance—correct and enhance product after customer deployment

11

Software Life Cycle Models

A process is a collection of activities, with well-defined inputs and outputs, for

accomplishing some task.

A life cycle model is a description of a process for carrying a software product through

all or part of its life cycle.

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Life cycle models tend to focus on major life cycle phases and their

relationships to one another.

• Recent work on software processes has examined many aspects of

development and maintenance in great detail.

•A life cycle model is a software process description, but the term life

cycle model predates recent discussions of software processes.

12

Life Cycle Models and the Software Process

The core of any software project is the coding ---architecture, abstraction, implementation

Life cycle models revolve around this core --- how does the software evolve as the project

progresses?

All life-cycle models are based on the simple idea of feedback --- synthesis and analysis are

mutually defined and recursively interdependent.

The differences between the life-cycle models lie in the ways in which the feedback is

organised, for example:

•Trial and error

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Trial and error

•Exploratory Programming

•The Waterfall Model

•Iterative Feedback Model

•Prototyping

•Test-Driven

•Design/Model-Driven

•Agile

13

Trial and Error : “Hacking”

•The most primitive life cycle model is trial and error, sometimes called build-and-fix or

hack-and-foist

•In this life cycle model, the first version of the system is built without planning,

documentation, or control

•If the product is accepted, the developers face an interminable period of confusion,

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•If the product is accepted, the developers face an interminable period of confusion,

frustration, and drudgery fixing an endless stream of problems

The feedback can be very primitive --- will we accept the first and only version of

the system (yes/no)

14

Exploratory Programming

A bit better than trial-and-error (but not much):

•it establishes feedback before delivery to customer

•it allows multiple feedback

•it separates specification from implementation

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods 15

The Waterfall Model (dominated the 70’s)

The waterfall model is the oldest life cycle model; is was proposed by

Winston Royce in 1970.

This model is called a waterfall because it is usually drawn with a

cascade of activities through the phases of the life cycle “downhill”

from left to right:

•analysis, requirements, specification, design,

implementation, testing, maintenance

1. Software Process and the Software Life Cycle

W. W. Royce. 1987.

Managing the

development of large

software systems:

concepts and

techniques. In

Proceedings of the

9th international

conference on

Software Engineering

(ICSE '87). IEEE

October 2011 J Paul Gibson: Agile Methods

implementation, testing, maintenance

There are many versions of the waterfall model:

•the phases/activities can be structured to different levels

of detail

•the feedback can be more or less flexible

16

(ICSE '87). IEEE

Computer Society

Press, 328-338.

(Reprinted from

Proceedings, IEEE

WESCON, August

1970, pages 1-9.)

Life Cycle Chaos - A Complete Feedback Graph Between Activities

Requirements

Design

Maintenance

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods 17

Implementation

Testing

Question: Why not just reduce

the number of activities to

manage the complexity?

Life Cycle Ideal - (Strict) Waterfall With No Feedback

Question: Why not have a completely

deterministic process path?

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods 18

Non-strict Waterfall Model

Although the waterfall model stresses a linear sequence of phases, in fact there is in

practice always an enormous amount of iteration back to earlier phases, a point

made by the arrows leading back up the waterfall, in the following diagram.

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

Note: In this variation, feedback is only from testing phase to any previous stage

19

Iterative Feedback Model

Like the non-strict waterfall method except that feedback is allowed from any phase

to the previous phase.

Note that we can still jump anywhere from testing!

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods 20

Question: why not add even more feedback?

Analysis of waterfall method

Strengths:

•Emphasises completion of one phase before moving on

•Emphasises early planning, customer input, and design

•Emphasises testing as an integral part of the life cycle

•Provides quality gates at each life cycle phase

Weaknesses:

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

Weaknesses:

•Depends on capturing and freezing requirements early in the life cycle

•Depends on separating requirements from design

•Not politically feasible in some organisations

• Emphasises products rather than processes

21

Away From Waterfall

1. Software Process and the Software Life Cycle

Daniel D. McCracken and Michael A. Jackson. 1982. Life cycle concept considered

harmful. SIGSOFT Softw. Eng. Notes 7, 2 (April 1982), 29-32.

“Any form of life cycle is a project management

structure imposed on system development. To

contend that any life cycle scheme, even with

October 2011 J Paul Gibson: Agile Methods 22

"The life cycle concept is simply unsuited to the needs of the

1980‘s in developing systems."

contend that any life cycle scheme, even with

variations, can be applied to all system

development is either to fly in the face of reality or

to assume a life cycle so rudimentary as to be

vacuous."

Prototyping Models (become popular in the 80’s)

.

A prototype is a working model of (part of) a final system

Prototyping is becoming more popular all the time, and people often refer to prototypes
in the literature.

Unfortunately, a variety of terminology is used, so it is often difficult to tell what is meant
when people discuss prototyping.

Note there are different types of prototyping model, with different characteristics, eg:

1. Software Process and the Software Life Cycle

October 2011 J Paul Gibson: Agile Methods

•Rapid Prototyping

•Evolutionary Prototyping

•Operational Prototyping

23

Maryam Alavi. 1984. An assessment of the

prototyping approach to information

systems development. Commun. ACM 27, 6

(June 1984), 556-563.

R. N. Burns and A. R. Dennis. 1985.

Selecting the appropriate application

development methodology. SIGMIS

Database 17, 1 (September 1985), 19-23

From Waterfall to Spiral (dominates the 90’s)

1. Software Process and the Software Life Cycle

B. Boehm, “A Spiral

Model of Software

Development and

Enhancement,”

Computer, May 1988, pp.

61-72.

October 2011 J Paul Gibson: Agile Methods 24

Agile: A lightweight alternative to heavy-weight waterfall-like processes?

1. Software Process and the Software Life Cycle

Claim:

With heavyweight

processes, there is

too much emphasis

on analysis and

design

documentation.

Agile is lightweight.

October 2011 J Paul Gibson: Agile Methods 25

Agile is lightweight.

It combines

prototyping and

test-based

processes: where

there is continual

development of

code and continual

validation of

customer

requirements

2. History of Agile: More or less a process?

The History of Agile Methods:

what can we learn?

October 2011 J Paul Gibson: Agile Methods 26

2. History of Agile: More or less a process?

History of Agile:

Where Did it

Come From?

Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi

Ronkainen. 2003. New directions on agile methods: a comparative

analysis. In Proceedings of the 25th International Conference on

Software Engineering (ICSE '03). IEEE Computer Society, Washington,

DC, USA, 244-254.

1990

October 2011 J Paul Gibson: Agile Methods 27

2000

History of Agile

Agile software development isn’t a set of tools or a single methodology,

but a philosophy put to paper in 2001 with an initial 17 signatories.

Agile was a significant departure from the heavyweight document-driven

software development methodologies—such as waterfall—in general use

at the time.

While the publication of the “Manifesto for Agile Software Development”

didn’t start the move to agile methods, which had been going on for

2. History of Agile: More or less a process?

October 2011 J Paul Gibson: Agile Methods

didn’t start the move to agile methods, which had been going on for

some time, it did signal industry acceptance of agile philosophy.

28

"Many people may think that agile is just another software development process.

Although that is true to a degree, there is a lot more to agile than just a process or

just a set of practices. Agile (or agility) is more of a mindset - a way of thnking

about software development."

Greg Smith, Ahmed Sidky, 2009, Becoming Agile: ...in an imperfect world

2. History of Agile: More or less a process?

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

•Individuals and interactions over processes and tools

•Working software over comprehensive documentation

•Customer collaboration over contract negotiation

•Responding to change over following a plan

http://agilemanifesto.org/

J Paul Gibson: Agile MethodsOctober 2011 29

•Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

2. History of Agile: More or less a process?

Kent Beck:

•Industrial experience with design patterns. ICSE 1996, IEEE Computer Society.

•Embracing Change with Extreme Programming, 1999, IEEE Computer.

•Test Driven Development: By Example. 2002 Addison-Wesley.

Mike Beedle & Ken Schwaber:

•Agile Software Development with Scrum , 2001, Prentice Hall.

Arie van Bennekum

Alistair Cockburn :

J Paul Gibson: Agile MethodsOctober 2011 30

Alistair Cockburn :

•Writing Effective Use-Cases, 2000, Addison-Wesley.

•The Costs and Benefits of Pair Programming, In Extreme programming examined,

Giancarlo Succi and Michele Marchesi (Eds.)., 2001, Addison-Wesley Longman Publishing

Ward Cunningham & KB:

A laboratory for teaching object oriented thinking, SIGPLAN Not. 24, 10 (September 1989)

Martin Fowler

•Refactoring: Improving the Design of Existing Code, 1999, Addison-Wesley.

2. History of Agile: More or less a process?

James Grenning:

•Launching Extreme Programming at a Process-Intensive Company, 2001, IEEE Softw. 18

Jim Highsmith and Alistair Cockburn:

•Agile Software Development: The Business of Innovation, 2001, Computer 34,

Andrew Hunt

Ron Jeffries and Grigori Melnik:

•TDD--The Art of Fearless Programming, 2007, IEEE Softw. 24, 3

J Paul Gibson: Agile MethodsOctober 2011 31

Jon Kern

Brian Marick:

•The Craft of Software Testing: Subsystem Testing Including Object-Based and Object-

Oriented Testing. Prentice-Hall, 1994.

•When Should a Test Be Automated?, 1998.

2. History of Agile: More or less a process?

Robert C. Martin:

•SoapBox - eXtreme Programming Development through Dialog, IEEE Software 17, 2000

•Professionalism and Test-Driven Development. IEEE Software 24(3), 2007

Steve Mellor:

•An object-oriented approach to domain analysis. SIGSOFT Softw. Eng. Notes 14, 5, 1989

•Make models be assets. Commun. ACM 45(11): 76-78, 2002.

Jeff Sutherland:

•Agile Can Scale: Inventing and Reinventing SCRUM in Five Companies, Cutter IT Journal,

2001

J Paul Gibson: Agile MethodsOctober 2011 32

2001

•Agile development: Lessons learned from the first scrum, Cutter IT Journal, 2004

•Future of Scrum: Parallel Pipelining of Sprints in Complex Projects. AGILE 2005: 90-102

Dave Thomas:

•Orwell: a configuration management system for team programming. In OOPSLA’88.

• Model driven development: the case for domain oriented programming. In OOPLSA’03.

•MDA: Revenge of the Modelers or UML Utopia?, IEEE Software, 21(3) , 2004

•Agile Programming: Design to Accommodate Change. IEEE Software 22(3), 2005

2. History of Agile: More or less a process?

Agile: Values, Principles and Methods

J Paul Gibson: Agile MethodsOctober 2011 33

2. History of Agile: More or less a process?

Agile: 12 Principles

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

J Paul Gibson: Agile MethodsOctober 2011 34

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

2. History of Agile: More or less a process?

Agile: 12 Principles

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.

J Paul Gibson: Agile MethodsOctober 2011 35

10. Simplicity--the art of maximizing the amount of work not done--is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Fundamentals: Agile vs Waterfall

Waterfall features distinct phases with checkpoints and deliverables, while

agile methods have iterations where the output of each agile iteration is

working code that can be used to evaluate and respond to changing and

evolving user requirements.

Waterfall assumes that it is possible to have good understanding of the

3. Agile Fundamentals

J Paul Gibson: Agile Methods

Waterfall assumes that it is possible to have good understanding of the

requirements from the start. But in software development, stakeholders often

don’t know what they want and can’t articulate their requirements. With

waterfall, development rarely delivers what the customer wants even if it is

what the customer asked for.

With Agile emphasis is placed on the customer and their requirements.

October 2011 36

Fundamentals: iterations count

Agile methodologies embrace iterations.

Small teams work together with stakeholders to define quick prototypes,
proof of concepts, or other visual means to describe the problem to be
solved. The team defines the requirements for the iteration, develops the
code, and defines and runs integrated test scripts, and the users verify the
results.

3. Agile Fundamentals

J Paul Gibson: Agile Methods

results.

Verification occurs much earlier in the development process.

October 2011 37

Suitability of Agile Methods

There is little agreement on what types of software projects are best suited for

the agile approach.

Many large organizations have difficulty moving from the traditional waterfall

method to an agile one.

When Agile is risky:

Suitability of Agile Methods

3. Agile Fundamentals

J Paul Gibson: Agile Methods

•Large scale development (>20 developers)

•Distributed development (non-co-located teams)

•Control-freak companies

•Unreliable customer/client contact

•Forcing an agile process on a development team

•Inexperienced developers

October 2011 38

4. Comparing Agile Methods

•Scrum

•Lean Development

•Extreme programming (XP)

•Adaptive Software Development (ASD)

Some of the most popular Agile methods:

October 2011 J Paul Gibson: Agile Methods 39

•Adaptive Software Development (ASD)

•Agile Modeling

• Crystal Methods

• Dynamic System Development Methodology (DSDM)

•Feature Driven Development

Scrum
4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 40

Scrum
In rugby, ‘scrum’ (related to “scrimmage”) is the term for a huddled mass of

players engaged with each other to get a job done. In software development,

the job is to put out a release.

Comes from Japan and based from industrial process control theory:

Takeuchi, Hirotaka and Nonaka, Ikujiro: The New New Product Development

Game, Harvard Business Review, 1986.

“Stop running the relayy race and take up rugby”

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

“Stop running the relayy race and take up rugby”

October 2011 41

Speed Up

development

Scrums for wicked problems

4. Comparing Agile Methods

Peter DeGrace and Leslie Hulet Stahl.

Wicked Problems, Righteous Solutions.

1990. Yourdon Press

Many of the systems problems facing software developers have all the

characteristics of wicked problems:

1. There is no definitive formulation of a wicked problem.

“the best adaptive project

management approach

for wicked software

development projects”

J Paul Gibson: Agile MethodsOctober 2011 42

1. There is no definitive formulation of a wicked problem.

2. Wicked problems have no stopping rule.

3. Solutions to wicked problems are not true-or-false but good-or-bad

4. There is no immediate and no ultimate test of a solution to a wicked

problem.

5. Every implemented solution to a wicked problem has consequences.

6. Wicked problems do not have a well-described set of potential solutions.

7. Every wicked problem is essentially unique.

8. Every wicked problem can be considered a symptom of another problem.

9. The causes of a wicked problem can be explained in numerous ways.

10. The planner (designer) has no right to be wrong.

Scrum: early research

Ken Schwaber, SCRUM Development Process, OOPSLA Business Object Design

and Implementation Workshop, 1997

M. Beedle et al., SCRUM: An Extension Pattern Language for Hyperproductive

Software Development, Pattern Languages of Program Design 4, N. Harrison,

B. Foote, and H. Rohnert, eds., Addison-Wesley, 2000,

Linda Rising and Norman S. Janoff. The Scrum Software Development Process

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

Linda Rising and Norman S. Janoff. The Scrum Software Development Process

for Small Teams. IEEE Softw. 17, 4. 2000.

Jeff Sutherland, Agile Can Scale: Inventing and Reinventing SCRUM in Five

Companies, Cutter IT Journal, 2001

Mike Beedle & Ken Schwaber, Agile Software Development with Scrum , 2001,

Prentice Hall.

October 2011 43

Scrum Phases
4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 44

SCRUM

Main scrum concepts:

Burndown chart. This chart, updated every day, shows the work remaining within the sprint.

The burndown chart is used both to track sprint progress and to decide when items must be

removed from the sprint backlog and deferred to the next sprint.

Product backlog. Product backlog is the complete list of requirements—including bugs,

enhancement requests, and usability and performance improvements—that are not currently

in the product release.

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

in the product release.

ScrumMaster. The ScrumMaster is the person responsible for managing the Scrum project.

Sometimes it refers to a person who has become certified as a ScrumMaster by taking

ScrumMaster training.

Sprint backlog. Sprint backlog is the list of backlog items assigned to a sprint, but not yet

completed. In common practice, no sprint backlog item should take more than two days to

complete. The sprint backlog helps the team predict the level of effort required to complete a

sprint.

October 2011 45

SCRUM

Scrum Meetings

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

The backlog is key: it is populated during the planning phase of a release

and defines the scope of the release

October 2011 46

SCRUM

The development process is divided into a

series of short iterations called sprints. Before

each sprint, the team members identify the

backlog items for the sprint. At the end of a

sprint, the team reviews the sprint to

articulate lessons learned and check progress.

Scrum Meetings

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

During a sprint, the team has a daily meeting called a scrum. Each team member describes the work

to be done that day, progress from the day before, and any blocks that must be cleared. To keep the

meetings short, the scrum is supposed to be conducted with everyone in the same room—standing

up for the whole meeting.

When enough of the backlog has been implemented so that the end users believe the release is

worth putting into production, management closes development. The team then performs

integration testing, training, and documentation as necessary for product release.

October 2011 47

SCRUM
Scrum Meetings4. Comparing Agile Methods

We stand up to keep the meeting short

The daily stand-up meeting (also known as a "daily scrum", a "daily huddle", "morning

roll-call", etc.) is simple to describe:

The whole team meets every day for a quick status update. We stand up to keep the

meeting short.

But this short definition does not really tell you the subtle details that distinguish an

effective stand-up from a waste of time. So how can you tell?

J Paul Gibson: Agile MethodsOctober 2011 48

For experienced practitioners, when things go wrong with the stand-up, they will

instinctively know what to adjust to fix the situation.

For novices, when things go wrong, it is much less likely that they'll figure out what to

do... and it’s much more likely that, given no assistance, they will simply abandon the

practice altogether.

This would be unfortunate since well-run stand-ups add significant value to teams.

SCRUM
Scrum Meetings4. Comparing Agile Methods

The goals of the daily stand-up are GIFTS

There are several goals for a daily stand-up meeting:

•To help start the day well

•To support improvement

•To reinforce focus on the right things: the baton not the runners

•To reinforce the sense of team

J Paul Gibson: Agile MethodsOctober 2011 49

•To reinforce the sense of team

•To communicate what is going on

As a mnemonic device, think of GIFTS:

Good Start, Improvement, Focus, Team, Status

The purpose is not to meet... it is to improve.
-- Joe Ely, "More on Daily Start-Up Meetings"

SCRUM
Scrum Meetings4. Comparing Agile Methods

Who attends?.... All Hands

People and representatives from various areas wish to know about and/or

contribute to the status and progress of the project. Communicating status in

multiple meetings and reports requires a lot of duplicate effort.

Therefore

Replace some or all of the meetings and reports with the daily stand-up. Anyone

who is directly involved in or wants to know about the day-to-day operation of the

project should attend the single daily stand-up meeting.

But

J Paul Gibson: Agile MethodsOctober 2011 50

But

People not directly involved can disrupt the stand-up if they are unclear about

what is expected behaviour. This may be addressed by simply informing new

participants and observers of expected norms beforehand.

In The Perfect World, Work Items Attend

Also Known As: Story-focused stand-up - if the stories are so important to the

project, they ought to be the ones speaking in the standup

SCRUM
Scrum Meetings4. Comparing Agile Methods

What do we talk about?

Yesterday Today Obstacles

Also Known As: Three Questions

Some people are talkative and tend to wander off into Story Telling. Some people

want to engage in Problem Solving immediately after hearing a problem. Meetings

that take too long tend to have low energy and participants not directly related to a

long discussion will tend to be distracted.

J Paul Gibson: Agile MethodsOctober 2011 51

long discussion will tend to be distracted.

Therefore

Structure the contributions using the following format:

•What did I accomplish yesterday?

•What will I do today?

•What obstacles are impeding my progress?

SCRUM
Scrum Meetings4. Comparing Agile Methods

Walk the (Improvement) Board.

Also Known As: Blockage Board, Impediment Board,

Obstacles raised in the stand-up are not removed or otherwise addressed in a

timely fashion.

Therefore

Post raised obstacles to an Improvement Board. This is a publicly visible

whiteboard or chart that identifies raised obstacles and tracks the progress of their

resolution. An Improvement Board can be updated outside of stand-ups and

serves as a more immediate and perhaps less confronting way to initially raise

J Paul Gibson: Agile MethodsOctober 2011 52

serves as a more immediate and perhaps less confronting way to initially raise

obstacles.

The simple act of writing an issue down and therefore explicitly acknowledging it is

a very reliable way to reduce drawn out conversations. So even if not everyone

agrees that any particular item is an obstacle, it is worth simply writing it down for

discussion after the meeting has ended.

Including an occurrence count with each raised obstacle highlights which issues are

generally more important to deal with first.

SCRUM
Scrum Meetings4. Comparing Agile Methods

What order do we talk in? … establish a rule in advance, eg:

•Last Arrival Speaks First

•Round Robin

•Pass The Token

J Paul Gibson: Agile MethodsOctober 2011 53

•Take a Card

•Follow The Board

SCRUM
Scrum Meetings4. Comparing Agile Methods

Where and when and how?

•Meet Where the Work Happens

•Same Place, Same Time

•At the start of the day? … or not?

•Stand Up close to each other

J Paul Gibson: Agile MethodsOctober 2011 54

•Stand Up close to each other

•Prepare in advance

•Fifteen minutes or less … Take problem solving off-line

•Encourage Autonomy (rotate the faciltatior?)

SCRUM

Scrum

4. Comparing Agile Methods

Pros Cons
Scrum uses small Sprints to effectively
break the system down into smaller
components and divided among teams.

Scrum only works when management
“trust the developers to use own
judgment “to accomplish task. Key
attributes of scrum is light and subtle
control. So if development team is

J Paul Gibson: Agile MethodsOctober 2011 55

control. So if development team is
young and immature, Scrum is risky.

A key activity in scrum is the “daily
scrum meetings”, which help team
members to show evidence of task
completion and allows for continuous
improvement, thereby enabling rapid,
bottom-up engineering

Scrum is ideally designed for company
with “currently existing agile methods.”
Therefore a company must already have
some working knowledge of agile
methods before using Scrum.

SCRUM

Scrum: a video

4. Comparing Agile Methods

Scrum Master in Under 10 Minutes (8:00)

http://www.youtube.com/watch?v=ZVFcagL1nsA

J Paul Gibson: Agile MethodsOctober 2011 56

Lean

development

4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 57

Lean development
Lean software development is a translation of lean manufacturing

principles and practices to the software development domain.

Adapted from the Toyota Production System, a pro-lean subculture

is emerging from within the Agile community:

4. Comparing Agile Methods

Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An

Agile Toolkit. Addison-Wesley Longman Publishing

J Paul Gibson: Agile MethodsOctober 2011 58

Agile Toolkit. Addison-Wesley Longman Publishing

Mary Poppendieck and Tom Poppendieck. 2006. Implementing Lean Software

Development: From Concept to Cash (The Addison-Wesley Signature Series). Addison-

Wesley Professional.

Mary Poppendieck. 2007. Lean Software Development. In Companion to the

proceedings of the 29th International Conference on Software Engineering (ICSE

COMPANION '07). IEEE Computer Society

Lean Software Development – key ideas

4. Comparing Agile Methods

• Life would be so much easier if customers would just stop changing their
minds.

• Let customers delay their decisions about exactly what they want as long as
possible, and when they ask for something, give it to them so fast they
don’t have time to change their minds.

October 2011 J Paul Gibson: Agile Methods 59

• Great designs come from great designers, and great designers understand
that designs emerge as they develop a growing understanding of the
problem, not collecting mass amounts of requirements.

• Deliver working system as fast as possible.

QUESTION: Do you agree with this?

Lean Software Development

4. Comparing Agile Methods

1.Eliminate waste. Any activity that does not “pay for itself” in reduced effort elsewhere in

the system and should be removed

2. Amplify learning. Developers always need to learn new methods to produce the most

robust system.

3. Decide as late as possible. The benefits of making a decision at the last minute is it avoids

making the wrong decision early and then having to fix it later.

4. Deliver as fast as possible. This principle is that if you deliver very quickly, it reduces the

chance of requirement changing. Which can cost a great deal if the change is late in the

development.

October 2011 J Paul Gibson: Agile Methods 60

development.

5. Empower the team. In order to get people to take responsibility, get motivated, and gel as

a team, they need to be responsible for the outcome and authorized to make it happen.

6. Build integrity in: It is key that the system maintains integrity through out the development

cycle. That means integration test, unit testing and general testing is a must, particularly

from the customer.

7. See the whole. Don’t break the system down into parts, but keep it as a whole.

Lean software development: focus on testing

4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 61

Lean software development: focus on testing

4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 62

Lean Software Development

4. Comparing Agile Methods

Pros Cons
Thinking the system as a whole, though
difficult for complex system, helps to
guarantee consistency and integrity of
the system. Reduces integration time
since since is developed as singular

With large system or complex system,
the only way for developers to visualize
its construction is through partitioning
the system. But LSD suggest the
opposite, which can be difficult to

October 2011 J Paul Gibson: Agile Methods 63

since since is developed as singular
unit.

opposite, which can be difficult to
accomplish.

The work team designs its own
processes, makes its own commitments,
gathers the information needed to reach
its goals, and polices itself to meet its
milestones.

Deciding as late as possible can have
adverse affect to the schedule. This can
hurt parallel development and increase
implementation time.

Extreme programming (XP)Extreme Programming (XP)

4. Comparing Agile Methods

J Paul Gibson: Agile Methods

XP is not this extreme!

October 2011 64

4. Comparing Agile Methods

From: Embracing Change with Extreme Programming, Beck, 1999

Extreme Programming

J Paul Gibson: Agile MethodsOctober 2011 65

4. Comparing Agile Methods

You can’t program until you know what you’re programming.

XP considers the period before a system first goes into production to

be a dangerous anomaly in the life of the project and to be gotten

over as quickly as possible. However, every project has to start

somewhere.

Extreme Programming (XP)
Embracing Change with Extreme

Programming, Beck, 1999

J Paul Gibson: Agile MethodsOctober 2011 66

somewhere.

You put the overall analysis together in terms of stories, which you

can think of as the amount of a use case that will fit on an index

card. Each story must be business-oriented, testable, and estimable.

A month is a good long time to come up with the stories for a 10

person-year project.

4. Comparing Agile Methods

How do you know what you should be programming at any particular time?

The customer picks the next release by choosing the most valuable features (called stories in

XP) from among all the possible stories, as informed by the costs of the stories and the

measured speed of the team in implementing stories.

The customer picks the next iteration’s stories by choosing the most valuable stories

remaining in the release, again informed by the costs of the stories and the team’s speed.

Extreme Programming (XP)
Embracing Change with Extreme

Programming, Beck, 1999

J Paul Gibson: Agile MethodsOctober 2011 67

remaining in the release, again informed by the costs of the stories and the team’s speed.

The programmers turn the stories into smaller-grained tasks, which they individually accept

responsibility for.

Then the programmer turns a task into a set of test cases that will demonstrate that the

task is finished.

Working with a partner, the programmer makes the test cases run, evolving the design in

the meantime to maintain the simplest possible design for the system as a whole.

Extreme programming (XP)

4. Comparing Agile Methods

XP Practices I (Usually associated with Agile)

Planning game. Customers decide the scope and timing of releases based on estimates

provided by programmers. Programmers implement only the functionality demanded by

the stories in this iteration.

Small releases. The system is put into production in a few months, before solving the whole

problem. New releases are made often—anywhere from daily to monthly.

Metaphor. The shape of the system is defined by a metaphor or set of metaphors shared

between the customer and programmers.

Simple design. At every moment, the design runs all the tests, communicates everything

the programmers want to communicate, contains no duplicate code, and has the fewest

possible classes and methods. This rule can be summarized as, “Say everything once and

J Paul Gibson: Agile MethodsOctober 2011 68

possible classes and methods. This rule can be summarized as, “Say everything once and

only once.”

Tests. Programmers write unit tests minute by minute. These tests are collected and they

must all run correctly. Customers write functional tests for the stories in an iteration. These

tests should also all run, although practically speaking, sometimes a business decision must

be made comparing the cost of shipping a known defect and the cost of delay.

Refactoring. The design of the system is evolved through transformations of the existing

design that keep all the tests running.

Continuous integration. New code is integrated with the current system after no more than

a few hours. When integrating, the system is built from scratch and all tests must pass or

the changes are discarded.

Extreme programming (XP)

4. Comparing Agile Methods

XP Practices II (also found outside Agile)

Pair programming. All production code is written by two people at one

screen/keyboard/mouse.

Collective ownership. Every programmer improves any code anywhere in the system at any

time if they see the opportunity.

On-site customer. A customer sits with the team full-time.

40-hour weeks. No one can work a second consecutive week of overtime. Even isolated

overtime used too frequently is a sign of deeper problems that must be addressed.

J Paul Gibson: Agile MethodsOctober 2011 69

overtime used too frequently is a sign of deeper problems that must be addressed.

Open workspace. The team works in a large room with small cubicles around the periphery.

Pair programmers work on computers set up in the center.

Just rules. By being part of an Extreme team, you sign up to follow the rules. But they’re

just the rules. The team can change the rules at any time as long as they agree on how they

will assess the effects of the change.

Extreme programming (XP)

4. Comparing Agile Methods

XP – Daily Communication is Key

J Paul Gibson: Agile MethodsOctober 2011 70

Extreme programming (XP)

For XP to be a success, critical expertise is required In:

Building User Stories - A user story describes problems to be solved by the
system being built. These stories must be written by the user and should be
about three sentences long. User stories do not describe a solution, use technical
language, or contain traditional requirements-speak.

Turning stories into code - Because user stories are short and somewhat vague,
XP will only work if the customer representative is on hand to review and
approve user story implementations.

4. Comparing Agile Methods

Extreme Programming (XP)

J Paul Gibson: Agile Methods

approve user story implementations.

Turning stories into test code – Unit testing is central to XP, where two twists on

conventional testing strategies make tests far more effective: Programmers write

their own tests and they write these tests before they code.

Evolving design – Must not break existing tests and must also support scaleable
incremental development

October 2011 71

Extreme programming (XP)Beck acknowledges a wide number of influences that led to the
development of XP. A selection of the most accessible are:

C. Alexander, The Timeless Way of Building, Oxford University Press, New York, 1979.

W. Cunningham, “Episodes: A Pattern Language of Competitive Development,”

Pattern Languages of Program Design 2, J. Vlissides, ed., Addison-Wesley, New York,

1996.

I. Jacobsen, Object-Oriented Software Engineering, Addison-Wesley, New York, 1994.

4. Comparing Agile Methods

Extreme Programming (XP)

J Paul Gibson: Agile Methods

T. Gilb, Principles of Software Engineering Management, Addison-Wesley, Wokingham,

UK, 1988.

B. Boehm, “A Spiral Model of Software Development and Enhancement,” Computer, May

1988, pp. 61-72.

R. Coyne, Designing Information Technology in the Postmodern Age, MIT Press,

Cambridge, Mass., 1995.

T. DeMarco and T. Lister, Peopleware, Dorset House, New York, 1999.

October 2011 72

The pros of XP

•Done well, XP improves teamwork.

•It builds true competency in all team members.

•It makes for an enjoyable and honest work day.

•It gets people out of their cubes and talking to one another.

•TDD teaches developers about how to write quality code and how to improve

their notions of design; it helps them to improve estimates. It improves the

resumes of developers.

October 2011 J Paul Gibson: Agile Methods 73

resumes of developers.

•It gives management many tools, including predictability, flexibility of resources,

consistency, and visibility into what's really going on.

•It gives customers the ability to see whether or not a company can deliver on its

promises.

•You don't spend a lot of time in stupid, wasteful meetings, and you don't

produce a lot of useless documents

The cons of XP

•Design becomes implicit rather than explicit

•Relying on emergent design is risky

•It is very hard to write good tests

•Too frequent iterations can compromise quality

October 2011 J Paul Gibson: Agile Methods 74

•To do it well you need to do it often – so its hard to introduce successfully

Extreme programming (XP)

4. Comparing Agile Methods

Extreme Programming (XP): video

Extreme Programming (Animated Video) (4:12)

http://www.youtube.com/watch?v=X_2PfTvXBeA

J Paul Gibson: Agile MethodsOctober 2011 75

Extreme programming (XP)

4. Comparing Agile Methods

Adaptive Software Development (ASD)

The software development community

has a […]dichotomy. One is represented

by the more traditional deterministic

development, derived from

management practices rooted in

nineteenth-century Newtonian physics

of stability and predictability -- or in

Arthur's terms, decreasing returns. [The

other]is about the second world --

unpredictable, nonlinear, and fast.

J Paul Gibson: Agile MethodsOctober 2011 76

American Programmer, Volume X, No. 1; January 1997.

http://www.adaptivesd.com/articles/messy.htm

unpredictable, nonlinear, and fast.

Extreme programming (XP)

4. Comparing Agile Methods

Adaptive Software Development (ASD)

Adaptive Software Development grew out of rapid application development

work by Jim Highsmith and Sam Bayer.

Principle of ASD: continuous adaptation of the process to the work at hand is

the normal state of affairs.

Speculate - the paradox of planning – it is more likely to

assume that all stakeholders are comparably wrong for

certain aspects of the project’s mission, while trying to

J Paul Gibson: Agile MethodsOctober 2011 77

certain aspects of the project’s mission, while trying to

define it.

Collaboration - balancing the work based on predictable

parts of the environment (planning and guiding them)

and adapting to the uncertain

Learning -challenge all stakeholders - knowledge is

gathered by making small mistakes based on false

assumptions and correcting those mistakes

Extreme programming (XP)

4. Comparing Agile Methods

Agile Modeling

Agile Modeling is a supplement to other Agile methodologies such as: Extreme

Programming, Agile Unified Process, Scrum

AMDD is the agile version of Model Driven Development (MDD)

Scott Ambler, Agile Modeling: Effective Practices for eXtreme Programming and

the Unified Process, 2002, John Wiley

J Paul Gibson: Agile MethodsOctober 2011 78

the Unified Process, 2002, John Wiley

“In my opinion, generative MDD is a lost cause for the current generation of developers.

Agile MDD will be a struggle to pull off, but at least it has a chance of succeeding.”

Agile model driven development is good enough, Scott Ambler, IEEE Software, 2003

Extreme programming (XP)

4. Comparing Agile Methods

Agile Modeling

J Paul Gibson: Agile MethodsOctober 2011 79

Extreme programming (XP)

4. Comparing Agile Methods

Crystal Methods

Alistair Cockburn developed

the Crystal family of software

development methods as a

group of approaches tailored

to different size teams.

Alistair Cockburn. Crystal

Clear a Human-Powered

Methodology for Small

J Paul Gibson: Agile MethodsOctober 2011 80

Methodology for Small

Teams (First ed.), 2004,

Addison-Wesley

Professional.

Extreme programming (XP)

4. Comparing Agile Methods

Crystal Methods

Alistair Cockburn developed the Crystal family of software development methods as a

group of approaches tailored to different size teams.

Crystal is seen as a family because Cockburn believes that different approaches are

required as teams vary in size and the criticality of errors changes.

Despite their variations all crystal approaches share common features:

• All crystal methods have three priorities: safety (in project outcome), efficiency,

habitability (developers can live with crystal).

J Paul Gibson: Agile MethodsOctober 2011 81

habitability (developers can live with crystal).

•They also share common properties, of which the most important three are:

Frequent Delivery, Reflective Improvement, and Close Communication.

The goal of Crystal : the least amount of process you can do and still succeed with an

underlying assumption of low-discipline that is inevitable with humans.

Crystal requires less discipline than extreme programming, trading off less efficiency for

a greater habitability and reduced chances of failure.

Extreme programming (XP)

4. Comparing Agile Methods

Dynamic System Development Methodology (DSDM)

A commercial « product » to aid

with management of Agile

approaches.

It is an agile project delivery

J Paul Gibson: Agile MethodsOctober 2011 82

It is an agile project delivery

framework, primarily used as a

software development method.

DSDM was originally based upon

the rapid application

development (RAD) method.
James Martin. 1991. Rapid Application

Development. Macmillan Publishing Co.,

Inc., Indianapolis, IN, USA.

Extreme programming (XP)

4. Comparing Agile Methods

Feature Driven Development

Evolved from the Coad Method, in the late 1990s

Peter Coad and Jeff De Luca later published a brief outline of FDD in their

1999 book “Java Modeling in Color with UML”.

Stephen Palmer with Mac Felsing wrote the definitive textbook, “A

Practical Guide to Feature Driven Development” two years later.

Features:

J Paul Gibson: Agile MethodsOctober 2011 83

Are tiny

Map directly onto an object domain model

Can be coded directly

Can be assembled in component sets.

Feature Driven Development:

looks pretty agile!

4. Comparing Agile Methods

J Paul Gibson: Agile MethodsOctober 2011 84

I would not recommend this for beginners to Agile development as it is hard to manage

interactions between features.

Comparing

Agile Methods

Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi

Ronkainen. 2003. New directions on agile methods: a comparative

analysis. In Proceedings of the 25th International Conference on

Software Engineering (ICSE '03). IEEE Computer Society, Washington,

DC, USA, 244-254.

4. Comparing Agile Methods

October 2011 J Paul Gibson: Agile Methods 85

5. Agile Resources

http://en.wikipedia.org/wiki/Agile_software_development

http://www.agilealliance.org/

http://agilemanifesto.org/

http://scrummethodology.com/

October 2011 J Paul Gibson: Agile Methods 86

http://scrummethodology.com/

http://www.extremeprogramming.org/

http://www.leansoftwareinstitute.com/

Agile research topics

•Agile Formal Methods

•Service-oriented Agile for the cloud

•Pair programming

•Agile and CMMi

6. Current Agile Research

J Paul Gibson: Agile Methods

•Agile and CMMi

•Agile and MDD/MDA

•Agile and automated testing

•Teaching agile

•Agile – (when) does it work?

October 2011 87

QUESTIONS ….?

October 2011 J Paul Gibson: Agile Methods 88

Feedback helps me improve my teaching process!

